
CISC 1600, Lab 2.1: Processing

Prof Michael Mandel

1 Getting set up

For this lab, we will be using Sketchpad, a site for building processing sketches
online using processing.js.

1.1. Go to http://cisc1600.sketchpad.cc in your browser

1.2. Create a new account and log in

1.1 Important information!

For this lab, you will be creating a different “sketch” for each section (except
this first one). Each time you press the “Render” button, Sketchpad saves a
version of your sketch and makes it accessible via a URL. Please make sure that
you do this at least once after completing each step in the lab so that your work
is saved properly. At the end of the lab, I will ask you to share the URLs of all
of your sketches with me and I will go through the saved points.

2 Lines and coordinates

The first step is to figure out the coordinate system and learn how to draw lines
going the directions you want them to.

2.1. Create a new sketch

• Click on the “New Sketch” button on the top right of the page

• Erase the existing code

• Replace it with this starting point

// Lab 2.1, Step 2.1: Create a new sketch
void setup() {

size(300, 300);
background(204);

}

void draw() {
line(10, 20, 30, 40);

}

• Change the name of the sketch to “Lab 2.1, sketch 2” by clicking on
the “[rename]” link at the top left of the page.

1

http://cisc1600.sketchpad.cc

• Click on the “Render” (Play) button to see your work (and save it in
the history)

2.2. Draw a horizontal line

• Update the call to line() so that the line is horizontal

• It should start at the same point and be of length 20

• Update the comment at the top of the sketch with information for
the current step (“Step 2.2: Draw a horizontal line”)

• Click on the “Render” button

2.3. Draw a vertical line

• Now update the call to line() so that the line is vertical

• It should start at the same point and be of length 20

• Update the comment at the top of the sketch and “Render” it

2.4. Draw one vertical line and one horizontal line meeting at the middle of
the canvas and making a +

• The lines should extend from one side of the canvas to the other

• Use the height and width variables that Processing defines for you
representing the height and width of the canvas.

• Update the comment at the top of the sketch and “Render” it

2.5. Optional challenge: Draw lines 10 pixels away from all four edges of the
canvas

• Draw four lines using four calls to line(). Each line should be 10
pixels away from one edge of the canvas.

• You will again use height and width

• Update the comment at the top of the sketch and “Render” it

3 Using the mouse position

Now we will use the variables mouseX and mouseY that Processing automatically
populates for us to track where the mouse is moving.

3.1. Create a new sketch. Change the name to “Lab 2.1, step 3”. Replace the
default code with the following:

// Lab 2.1, Step 3.1: Create a new sketch
void setup() {

2

size(300, 300);
}

void draw() {
background(204);
line(10, 20, 30, 40);

}

3.2. Draw a line from 0,0 to the mouse

• Update the draw() function so that the line is drawn from the point
(0,0) to the current position of the mouse. It should follow the mouse
as it moves.

• The current position of the mouse is automatically stored in the
variables mouseX and mouseY by Processing

• What happens if you comment out the call to background(204)?

• Update the comment at the top of the sketch and “Render” it

3.3. Draw a line from the middle of the canvas to the mouse

• Update the draw() function so that the line is drawn from the middle
of the canvas to the current position of the mouse.

• The middle of the canvas can be found from the variables height and
width that are automatically populated by Processing. Use them in
a simple formula to find the middle.

• Update the comment at the top of the sketch and “Render” it

3.4. Draw a 20 × 20 square that has its top left corner at the current mouse
position

• Update the draw() function to draw a square at the mouse’s current
coordinates. Use the rect() function to do so. The function takes
four numerical arguments: x, y, width, height.

• Update the comment at the top of the sketch and “Render” it

3.5. Optional challenge: Draw a square with its center at the mouse’s posi-
tion. Hint: call rectMode(CENTER) in your setup() function.

3.6. Optional challenge: Draw a rectangle centered on the middle of the can-
vas with one corner at the mouse’s position. Hint: using rectMode(CENTER),
you can plot the rectangle at a constant position (x, y), but with height
and width that depend on the mouse position.

3

4 Changing colors

Now we will use the mouse position variables to explore the use of color in
Processing.

4.1. Create a new sketch. Change the name to “Lab 2.1, step 4”. Replace the
default code with the following:

// Lab 2.1, Step 4.1: Create a new sketch
void setup() {

size(300, 300);
colorMode(RGB, width);
background(204);

}

void draw() {
}

4.2. Change background gray-level based on mouse position

• Add a call to background() in the draw() function, pass it a single
argument, the current mouse x-coordinate

• What happens when you move the mouse around the canvas? What
happens when you move it up and down? Side to side?

• Update the comment at the top of the sketch and “Render” it

4.3. Change gray-level of a shape based on position

• Change the call to background() that you just added to have a fixed
argument of 204 again

• Update the draw() function to draw a circle 50 pixels in diameter
centered at the current mouse location. Use the ellipse() function,
which takes four arguments: x, y, width, height.

• Add a call to fill(mouseX) to draw() between drawing the back-
ground and drawing the circle

• What happens when you move the mouse around the canvas? What
happens when you move it up and down? Side to side?

• Update the comment at the top of the sketch and “Render” it

4.4. Change color based on position

• Replace the call to fill() with fill(mouseX, mouseY, 0)

• What happens when you move the mouse to the four corners of the
canvas? Can you explain that based on the ideas of color mixing from
lecture?

4

• Comment out the call to background(204) and move the mouse
around the canvas again.

• Update the comment at the top of the sketch and “Render” it

4.5. Optional challenge: Change transparency of the circle based on the
mouse position. Hint: the transparency is set by an additional last
argument to fill() that ranges between 0 (opaque) and 255 (totally
transparent).

5 The if statement

5.1. Create a new sketch. Change the name to “Lab 2.1, step 5”. Replace the
default code with the following:

// Lab 2.1, Step 5.1: Create a new sketch
void setup() {

size(300, 300);
noStroke();
fill(255, 0, 0);

}

void draw() {
background(204);
rect(150, 0, 150, 300);

}

5.2. Draw on the half of the canvas that the mouse is in

• You will need to replace the call to rect() with an if statement:

if (condition) {
// statements to execute if condition is true

} else {
// statements to execute if condition is false

}

• Figure out what condition should be so that it is true when the
mouse is in the left half of the canvas and false when it is not. Add
it to the if statement.

• In the if clause, write the code to draw a rectangle covering the left
half of the canvas.

• In the else clause, draw a rectangle covering the right half of the
canvas

• Render the sketch and move the mouse around the canvas. If the
rectangle flips sides based on the position of the mouse, you have

5

implemented this correctly.

• Update the comment at the top of the sketch and “Render” it

5.3. Draw on the quarter of the canvas that the mouse is in

• Figure out what arguments you need to pass to rect() to draw the
red rectangle on each quarter of the canvas (top left, top right, bottom
left, bottom right)

• Figure out what tests on the mouse coordinates determine whether the
mouse is in each quarter of the canvas. Hint: it will be a combination
of a test on mouseX AND a test on mouseY. Use the && operator to
implement AND.

• Expand your if statement with two else if clauses. Update the
test conditions in the if and else if statements to reflect the test
for whether the mouse is in each quarter of the canvas.

• Insert the appropriate call to rect() inside each clause so that the
rectangle is drawn on the quarter of the canvas where the mouse
pointer is currently

• Update the comment at the top of the sketch and “Render” it

5.4. Optional challenge: Highlight a box if the mouse is inside of it.

• Draw a rectangle in the middle of the canvas

• Figure out what test to perform to see if the mouse is inside of the
square. Hint: test if the mouse is on the desired side of each of the
four edges of the box and AND them together using the && operator

• Call the function fill() with a light color if the test returns true
and a dark color otherwise.

• Update the comment at the top of the sketch and “Render” it

6 Looping statements

6.1. Create a new sketch. Change the name to “Lab 2.1, step 6”. Replace the
default code with the following:

// Lab 2.1, Step 6.1: Create a new sketch
void setup() {

size(500, 500);
}

void draw() {

6

background(204);
}

6.2. Draw five boxes stacked vertically using five calls to rect()

• Each box should be 40 × 40 pixels.

• Adjacent boxes should be separated by 20 pixels

• Update the comment at the top of the sketch and “Render” it

6.3. Draw the same five boxes stacked in the same way using a for loop.

• Figure out a formula for the position of each box as a function of the
box “number” (first = 0, second = 1, third = 2, . . .)

• Write a for loop utilizing your formula. The draw() function should
look something like this:

void draw() {
background(204);
for (int i = 0; i < 5; i++) {

// Your code here to draw box number i
}

}

• What happens if you start the loop at i = 1 instead of i = 0? What
if the loop uses the test i <= 5 instead of i < 5?

• Update the comment at the top of the sketch and “Render” it

6.4. Draw the same five boxes stacked in the same way using a while loop.

• Update your draw() function to look like this

void draw() {
background(204);
int i = 0;
while (i < 5) {

// Same code as step 6.3 here to draw box number i

i = i + 1;
}

}

• Update the comment at the top of the sketch and “Render” it

6.5. Optional challenge: Modify the while loop example to draw boxes until
they go off the edge of the canvas. Hint: you will need to change the
condition that the while loop tests.

7

7 Functions: reusing code

7.1. Create a new sketch. Change the name to “Lab 2.1, step 7”. Replace the
default code with the following:

// Lab 2.1, Step 7.1: Create a new sketch
void setup() {

size(300, 300);
}

void draw() {
background(204);

}

7.2. Draw a house

• Update your draw() function to draw a house using calls to rect()
and triangle() (which takes six arguments, the position of the three
vertices: x1, y1, x2, y2, x3, y3)

• Update the comment at the top of the sketch and “Render” it

7.3. Make your code into a function to draw a house

• Use this function skeleton
void house() {

// Insert your code here to draw a house
}

• Take your code from draw() that draws the house (not the background
or anything else) and move it to the house() function.

• Insert a call to the house() function in draw() where that code used
to be.

• Update the comment at the top of the sketch and “Render” it

7.4. Optional challenge: Draw the house relative to a particular “center”
position

• Update the definition of the house function to look like this

void house(int x, int y) {
// ...

• Update the call to house() in draw() to pass in the x and y arguments.
The call to house should now look like this

void draw() {
// ...

8

house(0, 0);
}

• Add x to all of the x coordinates in the calls to rect() and triangle()
in the function. Similarly add y to all of the y coordinates. What
does this do?

• In the draw() function, change the call to your function to house(50,
20). What happens?

• Update the comment at the top of the sketch and “Render” it

7.5. Optional challenge: Make the house follow the mouse

7.6. Optional challenge: Use your function to draw several houses at fixed
positions. Hint: you will need to call house() several times with different
arguments in your draw() function.

8 Create a project in Thimble with links to your
sketches

8.1. Create a new Thimble project

• Give it a reasonable title and <h1>, remove the default paragraph.

• Add an unordered () or ordered () list in the HTML page

8.2. Find links from each of your Sketchpad sketches

• For each sketch, click on the yellow “Share” button

• In the “Share” section of the sidebar, find the “link to this revision”
link. Copy the url and paste it into your thimble project.

• Find the blue timeline with squares labeled “p” on it and use the
slider on that timeline to find the points at which you had completed
each sub-part of each part of the lab. Use your updated comments at
the top of the sketch to figure out when this was.

• Copy the “link to this revision” link for each step’s final version of
the sketch and paste the URL into your thimble project

8.3. Organize your links in Thimble

• In your Thimble project, create a list item () for each sketch.

• Create a link (...) to the final version of that
sketch in that list item.

• Create a sub-list (using or) for each item by creating a
nested unordered or ordered list inside of the existing one

9

• Create links to each of the sub-steps of each sketch in those sub-items.

9 Optional challenge: Extensions

As an extra extra challenge, implement two or more of the following suggested
sketches.

• Draw 5 squares evenly spaced on the line between the point (0,0) and the
current mouse position.

• Draw a checkerboard pattern. Hint: use two “nested” loops (one inside
the other).

• Draw a checkerboard pattern out of equilateral triangles. Hint: alternating
rows will need to be offset from each other by half of the length of a triangle
side.

• Draw several shapes that all move in different directions and different
speeds based on the position of the mouse. For example, one might move
up when the mouse moves up and another might move down.

• Draw something cool of your own choosing.
• Draw something cool of your own choosing that changes as the mouse

moves.

10

	Getting set up
	Important information!

	Lines and coordinates
	Using the mouse position
	Changing colors
	The if statement
	Looping statements
	Functions: reusing code
	Create a project in Thimble with links to your sketches
	Optional challenge: Extensions

