

CISC 7610 Lecture 6
Midterm review

Topics:
Quick quick review
Example questions

Lec 1: Main question, Examples
Lec 2: Relational Databases

Lec 3: Multimedia data
Lec 4: Approaches to MMDBs

Lec 5: Distributed MMDBs

CISC 7610 Lecture 1
Introduction to multimedia databases
● Main question

– How can we process and store multimedia data so that we can find
what we are looking for in the future?

● Examples of multimedia databases

– Production and distribution for audio and video

– Distribution and discussion for audio, video, and images

– Surveillance and intelligence for speech, images, video
● Issues related to multimedia datatypes

– Storage of audio and video

– Real-time streaming / processing / synchronization

CISC 7610 Lecture 2
Review of relational databases

● Relational database management systems

– uses relational data structures / representation

– has a declarative data manipulation language

● Structured query language (SQL)

● Example data modeling problem: music collection

● Entity-relationship diagrams

– draw ER diagram for example problem

– convert ER diagram to schema

– create tables, insert data

– query data

CISC 7610 Lecture 3
Multimedia data and data formats

● Redundant vs irrelevant information

● Perceptual limits of multimedia data: audio and video

● JPEG encoding of images

– 8x8 blocks, YCbCr, DCT, Quantization, Encoding

● MPEG encoding of audio

– quantization in audio, multiband quantization

– MPEG audio compression hides quantization noise behind louder sounds

● MPEG and H.264 encoding of video

– I, P, B frames

– data streams: elementary stream, packetized ES, transport stream

CISC 7610 Lecture 4
Approaches to multimedia databases

● Metadata

● Loose vs tight coupling of data and metadata

● Storing multimedia data in an RDBMS

● Object (oriented) databases, e.g., VelocityDB

● Graph databases, e.g., Facebook TAO, Neo4j

– converting relational to graph model

● Object-relational mapping

CISC 7610 Lecture 5
Distributed multimedia databases

● Scaling up vs out

● Replication: copy and coordinate, purposes, types

● Partitioning: horizontal vs vertical

– horizontal advantages: scale forever

– horizontal disadvantages: cross-shard joins difficult

● Scalability

● CAP Theorem: can't replicate to another node, go ahead or wait?

– sacrificing availability

– sacrificing consistency

● NoSQL: throw out ACID and SQL language

– Key-value, key-document, column-family, graph

● NewSQL: keep SQL, some version of ACID

– Google F1 / Spanner: mask high commit latency

– VoltDB: restrict types of transactions allowed

Practice question:
DB Comparison
RDBMS Obj ORM Graph KV Doc Col

[Specifically] MySQL Velocity Hibernate Neo4j Cassandra CouchDB BigTable

Schema flexibility

Schema heterogeneity

Hierarchical data

Inheritance

Query flexibility

Media specific ops

Tight coupling

Impedance mismatch

Administration ease

Distributed ops

Speed

Consistency

Availability

ACID transactions

Practice question:
Sound effects DB

● You are building an audio production multimedia
database for creating and using sound effects

● Sound effects can be composed of other sound
effects

● We will compare the pros and cons of different
systems and modeling decisions

Sound effects DB:
Create the ER diagram

● Sound effects can be either simple (wav file) or
composite (other wav files)
– all sound effects have a duration and a description

– composite sound effects have constituent sound effects
● with start times and gains for each of them

– simple sound effects have a wav file

● Movies have many sound effects
– each usage of a sound effect in a movie has a start time

(offset) and a gain

Sound effects DB:
Usage

● The database will be used for building sound
effects and including them in movies

● The following operations are necessary to support
such use
– Search for existing sound effects

– Render sound effect

– Create sound effect

– Update sound effect

Sound effects DB:
Example sound effects

1 2 3 4

5 6 7

8 9

10 11

Sound effects DB:
Using a relational database

● How would you search for sounds labeled "loud"?

● How would you render sound 11? How many queries would it take?
What are they?

● How would you render sound 5? How many queries would it take?
What are they?

● How would you render sound 4? How many queries would it take?
What are they?

● How would you create a new sound based on 11 & 8?

1 2 3 4

5 6 7

8 9

10 11

Sound effects DB:
Using an object database

● How would you search for sounds labeled "loud"?

● How would you render sound 11? How many objects would you need
to load? What are they?

● How would you render sound 5? How many objects would you need to
load? What are they?

● How would you render sound 4? How many objects would you need to
load? What are they?

● How would you create a new sound based on 11 & 8?

1 2 3 4

5 6 7

8 9

10 11

Sound effects DB:
Other databases

● Is this a good candidate for a graph database?

● Is this a good candidate for an object relational
mapper?

● How would you search, render, create, and update
sound effects?

1 2 3 4

5 6 7

8 9

10 11

Sound effects DB:
Distributed databases

● Is this a good candidate for single-master
replication?
– What if there were no update operations, just creation?

● Is this a good candidate for vertical partitioning?
● Is this a good candidate for horizontal

partitioning?

1 2 3 4

5 6 7

8 9

10 11

Practice question:
Image sharing site

● You are running an image-sharing site like Flickr
● Users mostly view images, but also upload and comment on them

● Say that you wanted to store different sized previews of the images
– how much extra space would it take up to store one preview with half as

many pixels in both width and height?

– one half and one quarter?

– one half, one quarter, and one eighth?

● How could you generate a lower quality version of a JPG file quickly
without fully decoding it?

● How could you generate a 1/8th sized preview of a JPG file without
fully decoding it?

Practice question:
Image sharing site

● Your server is currently at 10% of its write
capacity, but 80% of its read capacity
– what would be the most cost-effective way to scale it?

● Your server is getting very popular in china, but
images are loading too slowly
– what would be the most cost-effective way to scale it?

CISC 7610 Lecture 1
Introduction to multimedia databases
● Main question

– How can we process and store multimedia data so that we can find
what we are looking for in the future?

● Examples of multimedia databases

– Production and distribution for audio and video

– Distribution and discussion for audio, video, and images

– Surveillance and intelligence for speech, images, video
● Issues related to multimedia datatypes

– Storage of audio and video

– Real-time streaming / processing / synchronization

Main question

How can we process and store
multimedia data so that we can

find what we are looking for in the
future?

Example: Production & distribution
ProTools for audio

Example: Production & distribution
Media Composer for video

Example: Distribution & Discussion
YouTube for video

https://youtu.be/R4ajQ-foj2Q?t=3m52s

Example: Surveillance & Intelligence
CCTV footage for events

http://observer.com/2014/07/not-so-camera-shy/

Issues with multimedia datatypes:
Querying

● How would you formulate a query?
– Can't use SQL

– At least need new user interface

● Additional queries you might want to run
– Content-based similarity

– Types of objects, their arrangement, composition

– Specific people, places, days, times

Issues with multimedia datatypes:
Storage

● Multimedia files are big
– Audio

● 44,100 samples per second
● 2 channels
● 16 bits per sample

– Video
● 1920 x 1080 pixels per frame
● 3 colors per pixel
● 30 frames per second

Issues with multimedia datatypes:
Synchronization and real-time

● Audio and video are experienced in time

● Viewing, editing, and querying them must respect
these temporal relationships (most of the time)

● For storage/transmission, data is broken into packets
– Packets must be delivered by their deadline

– Disks and networks introduce delivery delays

● Delivery quality can be characterized by throughput,
latency, and jitter

CISC 7610 Lecture 2
Review of relational databases

● Relational database management systems

– uses relational data structures / representation

– has a declarative data manipulation language

● Structured query language (SQL)

● Example data modeling problem: music collection

● Entity-relationship diagrams

– draw ER diagram for example problem

– convert ER diagram to schema

– create tables, insert data

– query data

A relational database management
system (RDBMS)

● Uses relational data structures

● Has a declarative data manipulation language at
least as powerful as the relational algebra

Uses relational data structures

● Relation: table with rows and columns

● Attribute: column

● Tuple: row

● Key: combination of attributes that uniquely
identifies each row

● Integrity rules: Constraints imposed upon the
database

Has a declarative data manipulation
language

● Declarative: says what, not how to manipulate data

● Relational algebra
– Selection: extract a subset of tuples

– Projection: extract a subset of attributes

– Cartesian product: extract all combinations of pairs of
tuples from two relations

– Union: combine two sets of tuples

– Set difference: remove one set of tuples from another

Structured query language (SQL)

● Data definition language
– Define relational schemata (pl of schema)

– Create/alter/delete tables and the attributes

● Data manipulation language
– Insert/delete/modify tuples in relations

– Query one or more tables

● Can implement relational algebra, but also takes
some liberties with it

Entity-relationship diagrams

EntityAttribute

Relationship

Cardinality

Entity2

Cardinality2

Data modeling example

● Artists: Name

● Albums: Name, Release date

● Tracks: Name, Duration, Number

● Each album has one artist

● Tracks can appear on multiple albums
(compilations)

Translating ER diagrams to schema

● Entities become tables

● Attributes become their attributes

● Many-to-many relationships become join tables
– Can have additional attributes

● Other relationships become foreign keys
– One-to-one, many-to-one, one-to-many

– Attributes added to table

Queries: find what we are looking for

● Search through the data

● Search through complex relationships

● Aggregate over the data for reporting

● And do all of this efficiently...

How do we make databases that are

● Effective (correct, durable, coherent, ...)
– Transactions

● Efficient
– Concurrency

– Memory hierarchy

– Indexing

– Query optimization

Transactions

● A sequence of DB operations that represent a single real-
world operation

● ACID properties – Guaranteed by RDBMSs
– Atomicity: all operations happen or none

– Consistency: transaction moves DB from one state that meets
integrity constraints to another

– Isolation: concurrent transactions have the same effect as serial

– Durability: once committed, transactions effects are permanent

● Relaxed by NoSQL databases in various combinations

CISC 7610 Lecture 3
Multimedia data and data formats

● Redundant vs irrelevant information

● Perceptual limits of multimedia data: audio and video

● JPEG encoding of images

– 8x8 blocks, YCbCr, DCT, Quantization, Encoding

● MPEG encoding of audio

– quantization in audio, multiband quantization

– MPEG audio compression hides quantization noise behind louder sounds

● MPEG and H.264 encoding of video

– I, P, B frames

– data streams: elementary stream, packetized ES, transport stream

Audio can be fully captured

● Hearing
– 20 – 20,000 Hz frequency range

– 140 dB dynamic range of loudness (10,000,000 : 1)

● CD quality recording
– Sampling rate: 44,100 Hz max freq 22,050 Hz→
– Bit depth: 16 bits dynamic range 96 dB→
– Bit rate: 44,100 samps/s x 16 bits x 2 chan. = 1.4 Mb/s

● Typical MP3 compressed recording
– Bit rate: 128 kb/s (11x compression)

Video streams can still be improved

● Vision
– 30 frames per second

– 300 dots per inch at one foot viewing distance
● 226M highest-res pixels to cover field of view

– 140 dB brightness dynamic range (10,000,000 : 1) over time

● HD broadcast quality video = 1.5 Gb/s
– 1920 x 1080 pixels/frame x 30 frames/s x 24 bits/pixel

● Typical H.264 compressed recording = 30 Mb/s (>50x)
– 25 GB Blu-ray disc holds 2 hours, including audio

Compression lets us store and
process these data efficiently

● Remove data that are redundant or irrelevant

● Redundant: implicit in remaining data
– Can be fully reconstructed (lossless compression)

● Irrelevant: unique but unnecessary
– For example: imperceptible to humans (lossy

compression)

Equal-loudness contours (red) (from ISO 226:2003 revision)
Fletcher–Munson curves shown (blue) for comparison

(threshold)

(estimated)

20

40

60

80

100 phon

10

-10
10 100 1000 10k 100k

0

20

30

40
50

60

70

80

90

100
110

120
130

Considerations for compression

● Latency: Amount of preceding signal that needs to be
observed to compress a given sample
– Important for real-time applications

● Locality: Amount of decoded signal that would be
affected by changing one bit in encoded signal
– Important for error robustness

● Generality: Variety of signals that can be encoded
(efficiently) by a given encoder-decoder

● Decoder complexity vs encoder complexity

Image compression: JPEG encoding

YCbCr8x8 Blocks DCT

QuantizationEncodingDesertWall.jpg

Images from: http://www.ams.org/samplings/feature-column/fcarc-image-compression

http://www.ams.org/samplings/feature-column/fcarc-image-compression

Quantization in audio

● Represent waveform with discrete levels

● Equivalent to adding an error of uniform noise

Q[x[n]] = round(x[n]/D)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 5 10 15 20 25 30 35 40

-2

0

2

4

6 x[n]Q[x[n]]

error e[n] = x[n] - Q[x[n]]

x

Q[x]

-D/2 +D/2

p(e[n])

MPEG Audio basic idea

● Break audio into different frequencies

● Quantize each frequency as much as possible
– While remaining imperceptible

● “Hide” quantization behind louder signals
– Need psychoacoustic model of “hiding”

Subband N

Masking tone

Masked
threshold

Safe noise level

Quantization noise freq

le
ve

l

SN
R

 ~
 6

·B

Video coding: MPEG2 and H.264

● Take advantage of redundancy in space and time
– Predict pieces of frames from other frames

● Take advantage of irrelevance using quantization
like JPEG

● Final lossless coding to squeeze out last bits

● Video codecs rely more heavily on “analysis-by-
synthesis” than audio and image codecs

MPEG2 video encoding basics

Authoring Division Name File Name
Security Notice (if required)H

RGB

YUV

Macro blocks

Blocks

Remove spatial
redundancy

I B B P

Remove temporal
redundancy

Zig Zag
Scan

Discrete Cosine Transform

Quantization

0110110
0101100
1101111

0110
0101
1101

_.
.

Huffman Coding

0110
0101
1101

1
011

000010

Image from: http://www.keysight.com/upload/cmc_upload/All/6C06MPEGTUTORIAL1.pdf

Used in DVD, digital (HD) TV

http://www.keysight.com/upload/cmc_upload/All/6C06MPEGTUTORIAL1.pdf

MPEG2 data is composed of streams

https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/MPEG_Transport_Stream_HL.svg/2000px-MPEG_Transport_Stream_HL.svg.png

MPEG2 data is composed of streams

Elementary stream (ES): e.g., Frames I-frame

P-frame data
PES

Header
Packetized ES (PES) I-frame data

PES
Header

P-frame data

Transport
stream

TS
Header

PES
data

TS
Header

PES
data

TS
Header

PES
data

TS
Header

PES
data

Variable Variable

Variable VariableFixed Fixed

Fixed Fixed Fixed Fixed

Summary

● Compression lets us store data efficiently

● Remove data that are redundant or irrelevant

● Redundant: implicit in remaining data
– Can be fully reconstructed (lossless compression)

● Irrelevant: unique but unnecessary
– For example: imperceptible to humans (lossy

compression)

CISC 7610 Lecture 4
Approaches to multimedia databases

● Metadata

● Loose vs tight coupling of data and metadata

● Storing multimedia data in an RDBMS

● Object (oriented) databases, e.g., VelocityDB

● Graph databases, e.g., Facebook TAO, Neo4j

– converting relational to graph model

● Object-relational mapping

Metadata is data about data

● Information on creation, content, and interaction
– Creation: recorded by device about hardware, file

– Content: what a human would say it's “about”

– Interaction: viewer statistics, comments

● Holistic or time-related

● Multimedia file types typically include facilities for
embedding metadata
– EXIF for camera data

– ID3 for MP3 files

Holistic (Object-level) metadata

● Automatic metadata from creation: EXIF
– Frame rate, resolution, quality, codecs, equipment

● Metadata about the content
– Topics, tags, participants

– Mostly human-generated

– Will discuss machine-generated later in course

● Usage and interaction metadata
– Comments, thumbs ups, skips, shares

Time-related metadata

● Automatic metadata from creation (theoretically)
– Location, view direction, camera/lens parameters,

scene changes

● Metadata about the content
– Closed captions, events/actions, scene descriptions

● Usage and interaction metadata
– Comments, thumbs ups, skips, shares

Loose vs tight coupling
of DB and multimedia storage

● Loose coupling
– DBMS for metadata, filesystem for media

– Simpler to implement, maintain, optimize, improve

– Difficult to maintain integrity and consistency

● Tight coupling
– DMBS for metadata and media

– Maintains integrity and consistency between metadata and
media

● We will strive for tightly coupled systems

Loose coupling:
Store data on the filesystem

● Simple key-value store (filename data)→
● Stores some metadata (size, create/modify dates)

● Fast access, can be distributed

● But: hard to query, hard to add metadata

Tight coupling with RDBMS

● But media data is hard to store in one
– Can store it in BLOBs (Binary Large Objects)

– but can't do much with them

● No notion of constituent parts
– Streams, tracks, frames

● Difficult to extend functionality to include media-
specific operations

● The point of RDBMS is run-time querying
– But BLOBs are not useful in this context

RDBMS strengths and weaknesses

● Strengths
– Extremely flexible queries

– Database can have arbitrary schema

– Some overhead for accesses (esp with locking)

– Can distribute reads across multiple servers

● Weaknesses
– Difficult to build hierarchical models

– Fixed schema

– Can't perform media-specific operations

– Difficult to support distributed writes

Tight coupling with
Object (oriented) databases

● Application using the database
– Is procedural

– Deals with one item of data at a time

– Creates complex data structures

● The database, conversely
– Is declarative

– Deals with tuples in sets instead of individually

– Holds data in flat tables

● Combining them exposes an “impedance mismatch”

● Can we create a database that stores data in a way more similar to the
application?

Object databases

● Persistent store for objects

● Preserves object type and structure (nesting)

● Preserves references between objects

● Easy to combine data and metadata

● Little querying, mainly reference-following
– Lookups performed in code, not in query language

● Example: VelocityDB for C#

https://velocitydb.com/Samples.aspx

Object databases
strengths and weaknesses

● Stengths
– Stores objects directly

– Easy to extend datatypes

– Arbitrary and modify-able schema

– Stores metadata and data together

– Can define media-specific operations

● Weaknesses
– Hard to distribute load across machines

– Hard to query

– Mixes code and schema

– Difficult to administer

Tight coupling with
Graph databases

● One speed advantage of object databases over
RDBMS, comes from reference following

● Why compute joins that you know the answer to?

● Precompute joins and store as a graph of
relationships: a graph database

● Examples: Facebook TAO, Neo4j

The Associations and Objects (TAO)

Neo4j Example:
Converting relational to graph-based

● Each row in a entity table is a node

● Each entity table becomes a label on nodes

● Columns on those tables become node properties

● Foreign keys become relationships to the
corresponding nodes in the other table

● Join tables become relationships, columns on those
tables become relationship properties

Neo4j Example:
Relational vs graph schema

Relational Graph-based

Graph database
Strengths and weaknesses

● Strengths
– Joins are precomputed

– Easy to modify schema

– Fast

– Scalable

● Weaknesses
– Harder to execute queries not embodied in

relationships

Tight coupling with
Object-relational mapping (ORM)

● Layer between RDBMS and OO program

● Translates certain OO calls into queries

● Translates results tuples into objects

● Almost all languages have an ORM

ORM Strengths and weaknesses

● Strengths
– Easier to extend with new operations than RDBMS

– Can be distributed across many computers (for reads)

– Arbitrary schema

● Weaknesses
– May require many queries

– Still can't store large files/objects

– Fixed schema

Summary

● Awkward to fit multimedia data directly into relational
databases

● Object-relational impedance mismatch makes it difficult to
use RDBMS in programs anyway

● Object-relational mappings provide an imperfect bridge
between the two

● Object databases remove the impedance mismatch
– But make it awkward to query

● Graph databases extract associations from objects
– Or pre-compute joins in a relational model

CISC 7610 Lecture 5
Distributed multimedia databases

● Scaling up vs out

● Replication: copy and coordinate, purposes, types

● Partitioning: horizontal vs vertical

– horizontal advantages: scale forever

– horizontal disadvantages: cross-shard joins difficult

● Scalability

● CAP Theorem: can't replicate to another node, go ahead or wait?

– sacrificing availability

– sacrificing consistency

● NoSQL: throw out ACID and SQL language

– Key-value, key-document, column-family, graph

● NewSQL: keep SQL, some version of ACID

– Google F1 / Spanner: mask high commit latency

– VoltDB: restrict types of transactions allowed

Motivation

● YouTube receives 400 hours of video per minute

● That is 200M hours per year

● At 12 GB/hour (for H.264 HD quality)

● That is 2.6 Exabytes (2,600,000 TB) per year

● Which is more than one machine can handle
– So how do we spread this across multiple machines?

http://www.reelseo.com/vidcon-2015-strategic-insights-tactical-advice/

http://www.reelseo.com/vidcon-2015-strategic-insights-tactical-advice/

Scaling up vs scaling out

● Scaling up: buy a bigger server
– Pro: Code stays pretty much the same

– Con: Expensive, hard limits

● Scaling out: buy more servers
– Pro: Much cheaper, soft limits

– Con: Much more complicated code (distributed
systems)

Scaling out: Replication vs partitioning

1x

Initial system
100 Trans/s

2x

Scale up
200 Trans/s

1x

Scale out
Partitioning
200 Trans/s

100
200

100

100

1x

Scale out?
Replication
200 Trans/s

100

100

2x

2x

10
0

Replication: copy and coordinate

● Replication maintains
identical copies of data
on multiple machines

● Reads can come from
any machine

● Writes must be applied
to all machines

Scale out?
Replication
200 Trans/s

100

100

2x

2x

10
0

Purpose of replication

● Data distribution
– Geographical diversity for lower latency and redundancy

● Load balancing
– Spread requests among multiple servers

● Backups and recovery
– Make and restore copies without downtime

● High availability
– Hot spare for fast recovery

Types of replication

● Eager / synchronous
– Transaction waits for all replicas to be updated

– Maintains consistency, but can cause delays

● Lazy / eventual / asynchronous
– Transaction waits for one replica to be updated

– Changes propagated to other replicas eventually

– Faster, but can lead to conflicts between replicas
modified in different ways

Master/slave replication

● Only “master” replica
accepts writes
– Avoid consistency issues

– Sends updates to others

– Single point of failure

● All replicas serve reads
● If master goes down,

another replica can be
promoted

Write

Write

W
rite

Read

Partitioning

● Sometimes, data can be divided into uncoupled or
loosely coupled partitions
– Then scaling to more machines just requires dividing

into more partitions

● Horizontal partitioning: divide relations by ID
– Also known as sharding

● Vertical partitioning: divide relations by attributes
– Compare to database normalization

Partitioning example

ID Name Zipcode Thumbnail Photo

1 David 02138 [3kb] [2MB]

2 Jared 43201 [3kb] [2MB]

3 Sue 94110 [3kb] [2MB]

4 Simon 19119 [3kb] [2MB]

5 Richard 98105 [3kb] [2MB]

Vertical Partitioning example

ID Name Zipcode Thumbnail Photo

1 David 02138 [3kb] [2MB]

2 Jared 43201 [3kb] [2MB]

3 Sue 94110 [3kb] [2MB]

4 Simon 19119 [3kb] [2MB]

5 Richard 98105 [3kb] [2MB]

Horizontal Partitioning example

ID Name Zipcode Thumbnail Photo

1 David 02138 [3kb] [2MB]

2 Jared 43201 [3kb] [2MB]

3 Sue 94110 [3kb] [2MB]

4 Simon 19119 [3kb] [2MB]

5 Richard 98105 [3kb] [2MB]

Horizontal Partitioning advantages

● Higher write bandwidth than replication
– All shards accept writes

– So N times higher capacity

● Higher scalability than replication
– Continue to sub-divide shards to scale up without limit

Horizontal Partitioning disadvantages

● Re-balancing is necessary and costly
– When one shard grows too large

– When adding new machines

● Cross-shard joins are slow or impossible
– Additional reliance on network

– Shards could be in separate data centers (US vs
Europe)

Scalability

● How hard is it to double your current capacity?
– Capacity for traffic, storage, transactions

– Capacity for read or write operations

● Independent of current processing speed

http://docs.gigaspaces.com/sbp/first-xap-app-step-4.html

http://docs.gigaspaces.com/sbp/first-xap-app-step-4.html

Brewer's CAP theorem

● These three properties cannot be achieved by a
distributed system simultaneously
– Strong Consistency: All clients see the same data at the

same time

– Availability: All requests receive a response as to their
success or failure

– Partition tolerance: The system continues to function
in the event of network failures

Brewer's real CAP theorem

● A node fails to communicate with another node
when attempting to replicate its data (P)

● It can decide to
– Go ahead anyway, sacrificing consistency (C)

– Wait for the other node, sacrificing availability (A)

● Business considerations: availability > consistency
– Take the customer's order and sort it out later if

necessary

Sacrificing availability

● Wait until all nodes can synchronize

● “Amazon claim that just an extra one tenth of a
second on their response times will cost them 1%
in sales. Google said they noticed that just a half a
second increase in latency caused traffic to drop
by a fifth.”

● Examples: Multi-master DBs, Neo4j, Google
BigTable

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

Sacrificing consistency

● Go ahead with update (Eventual consistency)

● Problems
– Pushes complexity from database into application

– When is “eventually”?

● Examples
– Domain name service

– Facebook's Cassandra and Voldemort

– CouchDB

NoSQL vs NewSQL

● NoSQL: restrictive interpretation of CAP theorem
– Throw out ACID transactions with SQL

– In order to increase scalability

● NewSQL: more nuanced interpretation of CAP
– Regain ACID transactions and SQL

– Maintain scalability by optimizing for quick, localized
transactions

● SQL is just the query language, independent of CAP
– And still need a way to query

Types of NoSQL Databases

● Key-value store

● Key-document store

● Column-family stores

● Graph databases (again)

Summary

● Scaling up is easier, but scaling out is more sustainable
in the long term

● Replication copies data, allowing parallel reads

● Partitioning divides up data to allow parallel writes

● CAP theorem says that you must choose between
availability and consistency

● NoSQL sacrifices ACID transactions for scalability

● NewSQL maintains ACID transactions with scalability

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

