CISC 7610 Lecture 11
Video retrieval

Topics:

Structure analysis
Feature extraction
Video analysis
Query and retrieval
Summarization and browsing



What types of video are we indexing?



What types of video are we indexing?

 Web video: huge repositories of relatively short videos

 Remote instruction: video lectures, presentations,
interaction

TV shows: Sit-coms, sports, news
e Films: Action, comedy, drama, animation
e Surveillance

e Each type has its own set of conventions / properties



Video retrieval process overview
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e Motion features can help

e identify objects and actions

e Good overview:
Hu et al (Trans SMC-C, 20
11)

Asghar, Hussain, & Manton, (2014). Video indexing: a survey. Int. J. Comp. & Info. Tech., 3(01).


http://www.dcs.bbk.ac.uk/~sjmaybank/survey%20video%20indexing.pdf
http://www.dcs.bbk.ac.uk/~sjmaybank/survey%20video%20indexing.pdf
http://ijcit.com/archives/volume3/issue1/Paper030123.pdf

Videos can be decomposed into



Videos can be decomposed into
scenes, shots, and frames
e Clip

e Scenes
e Shots

e Frames



Videos can be decomposed into
scenes, shots, and frames

e Scenes

e Shots



Pre-processing:
Predicting video structure

e Greatly improves subsequent processing

- Allowing analysis of homogeneous video regions
e Predict shot boundaries and scene boundaries

e Identity key frames for shots and scenes



Predicting video structure:
Scene segmentation

e A scene 1s a group of contiguous shots that occur
at a single place in continuous time

e Three types of features: key frames, audio-visual,
background color/texture

e Four types of approaches: merging, splitting,
model-based, shot boundary classification
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http://www.imsdb.com/scripts/Star-Wars-The-Force-Awakens.html

Predicting video structure:
Shot boundary detection

« Two types of shot boundaries: cut (easier to find)
and gradual (harder to find)

e General approach
— Extract features from frames
— Compute similarities between frames

— Look for transitions
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K frames in a window (K = 14}



https://www.youtube.com/watch?v=NVFDAhPHDa4
http://tech.hulu.com/blog/2014/05/03/face-match-system-shot-boundary-detection-and-face-tracking/

Predicting video structure:
Key frame extraction

e For various interface and analysis purposes, we usually want a
still image to summarize a clip, scene, or shot

e Called “key frame extraction”, can be based on

— Visual similarity, clustering, objects/events, motion curves

 Hard to evaluate because there 1s no one right answer
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https://www.fujixerox.com/eng/company/technology/communication/multimedia/flame.html

Video features

e Once videos are segmented, each segment 1s
characterized by features

e Can use 1mage features, but can also take
advantage of temporal continuity and motion



Video features: (key) frame features

e Can analyze key frames as images

— Color, texture, shape features
e Pro: easy and fast to compute, usually works ok

e Con: 1gnores motion or changes over time
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Video features: object features

e Goal: find videos with similar objects
e First, identify objects of interest in video
 Then compute features on those objects

« Most useful for specific kinds of objects (eg, faces)



Video features: object features
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http://www.robots.ox.ac.uk/~vgg/publications/2005/Sivic05a/sivic05a.pdf

Video features: motion features

e Motion separates video
indexing from still
images

e Two kinds of motion:
camera and object

e Camera:



Video features: motion features

 Motion separates video
indexing from still
images

e Two kinds of motion:
camera and object

TILY

 Camera: pan, tilt, zoom,  vowrw
pedestal, dolly, truck

— Pro: easy to compute

— Con: not useful for
retrieval alone


http://slideplayer.com/slide/6004486/

Video features: motion features

 Motion separates video
indexing from still
images

-
. . 3
e Two kinds of motion: -
camera and object
DOLLY IN

e Camera: pan, tilt, zoom,
pedestal, dolly, truck

- Pro: easy to compute

— Con: not useful for
retrieval alone

* Object motion: Statistics,
trajectories, relationships



http://slideplayer.com/slide/6004486/

Video features: object motion features

e Generally requires segmenting or identifying
objects first, which 1s hard

e Possible without performing object segmentation
from MPEG motion pointers (Su et al, 2007)
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Videos | segmentation [ '| camera motion [ | motion flows [ annotation
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https://ir.nctu.edu.tw/bitstream/11536/10248/1/000249842000010.pdf

Video features: object motion features

e Generally requires segmenting or identifying
objects first, which 1s hard

e Possible without performing object segmentation
from MPEG motion pomters (Su et al, 2007)



https://ir.nctu.edu.tw/bitstream/11536/10248/1/000249842000010.pdf

Video analysis

e Data mining: unsupervised pattern discovery
e Classification: supervised concept recognition

e Annotation: supervised prediction of textual
description of a video

e Generally difficult to draw hard boundaries
between these activities



Video data mining

e Data mining i1s the unsupervised i1dentification of
patterns

e For video these patterns can include recurring
objects, actions, and behaviors

 Or unusual objects, actions, and behaviors

e Useful for surveillance, video structure analysis,
data exploration, subsequent classification training



Video data mining: Object mining

e Group different
instances of the same
object in a video

e Difficult because of
changes in lighting,
camera angle,
deformation, etc

e Sivic and Zisserman
(2004) use SIFT
features




Video data mining: pattern discovery

e Recognize sequences of Input Video
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http://www.ece.rice.edu/~av21/Documents/pre2011/From%20Videos%20to%20Verbs%20Mining%20Videos%20for%20Activities%20using%20a%20Cascade%20of.pdf

Video classification

 Difficult because of the gap between the input features (color,
texture, shape) and a human’s interpretation of this
information

e Classification typically refers to full videos, annotation to parts

e Can classify editing effects, and semantic information,
including
- Video genre
- Video shots
- Video event recognition

— Video object recognition



Classification: genre

e Various types of genres to predict

e Film genre: comedy, action, drama, horror, etc

— Rasheed et al (TCSVT, 2004) separate using average shot
length, color variance, motion content, and lighting key

e Genre is really hierarchical (Fan et al, TMM 2004)
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http://webpages.uncc.edu/jfan/IEEE_MM2004.pdf

Classification: shots

e Identify the type of
shot from a finite set

e Straightforward in
certain types of videos
- E.g., sports

» Ekin et al (TIP, 2003)

classify soccer shots
Into:



Classification: shots

e Identify the type of
shot from a finite set

e Straightforward in
certain types of videos

- E.g., sports

» Ekin et al (TIP, 2003)
classify soccer shots
into: long, medium,
closeup, and non-field



https://www.researchgate.net/profile/A_Tekalp/publication/5613899_Automatic_soccer_video_analysis_and_summarization/links/0046351b86fdb51d0a000000.pdf

Classification: shots

Long Shot Long Shot
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e Identify the type of
shot from a finite set

e Straightforward in
certain types of videos

- E.g., sports

» Ekin et al (TIP, 2003)
classify soccer shots
into: long, medium,
closeup, and non-field



https://www.researchgate.net/profile/A_Tekalp/publication/5613899_Automatic_soccer_video_analysis_and_summarization/links/0046351b86fdb51d0a000000.pdf

Classification: events

« TREC Video Retrieval Evaluation (TRECVID) is
a yearly collection of competitions for video
analysis and retrieval

e Events from 2015 are shown at right
« MAP = mean average precision, higher is better

e Events are specified by giving 0-100 example
videos

e Other events: traffic patterns, sports, crime



Classification: events
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Video annotation: object recognition

 Identify where, when, and what an object is
e Can use image-based classifier on video frames
- With temporal continuity to reduce false positives

» Additional context from
- Relationships between labels

- Scene that objects are in

» ImageNet 2015 object detection from video task

hamster



http://vision.cs.unc.edu/ilsvrc2015/ui/vid

Video annotation: captioning

e Can caption on several levels of detail

e Corpus of Textually Annotated Cooking Scenes
(TACoS) multi-level version

« Example predictions from Donahue et al (CVPR 2015)

Detailed: A man took a cutting board and knife from the drawer. He
took out an orange from the refrigerator. Then, he took a knife from the
drawer. He juiced ane half of the orange. Mext, he opened the
refrigerator. He cut the arange with the knife. The man threw away the
skin. He got a glass from the cabinet. Then, he poured the juice into the
glass. Finally, he placed the arange in the sink.

Short: A man juiced the arange. Mext, he cut the orange in half. Finally,
he poured the Juice into a glass.

One sentence: A man juiced the orange.


https://www.youtube.com/watch?v=w2iV8gt5cd4&feature=youtu.be
http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/tacos-multi-level-corpus/

Video annotation: captioning

Detailed: A man took a cutting board and knite fram the drawer. He
took out an orange from the refrigerator. Then, he took a knife from the
drawer. He juiced ane half of the arange. Mext, he opened the
refrigeratar. He cut the arange with the knife. The man threw away the
skin. He got a glass from the cabinet. Then, he poured the juice into the
glass. Finally, he placed the orange in the sink.

Short: A man Juiced the orange. Mext, he cut the orange in half. Finally,
he poured the juice into a glass.

One sentence: A man juiced the orange.


http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/tacos-multi-level-corpus/

Video query and retrieval

e Many possible query formulations

e Different similarity measures work best for
different kinds of queries

e Relevance feedback allows the user and system to
define the task together



Query and retrieval: query types

e Query by example
e Query by sketch

* Query by object(s)
e Query by keywords

e Query by natural
language



http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html

Query and retrieval:
Similarity measures

 What does the user mean by “similar”?
e Similar color, texture, motion

e Similar description

« Some combination

e Often the user doesn’t know exactly what they
want ahead of time



Query and retrieval:
Relevance feedback (Active learning)

e System and user work together to define query
and similarity metric on the fly

e Good when user knows what they want, but have
difficulty formulating a specific query
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Huang et al (2008), “Active learning for interactive multimedia retrieval” Proceedings of the IEEE.


http://www.ee.columbia.edu/~graham/papers/huangDRCMPE08.pdf

Query and retrieval:
Relevance feedback (Active learning)

e System and user work together to define query
and similarity metric on the fly

e Good when user knows what they want, but have
difficulty formulating a specific query

Active Learning System
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Huang et al (2008), “Active learning for interactive multimedia retrieval” Proceedings of the IEEE.



Relevance feedback also
applicable to other media like music
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Huang et al (2008), “Active learning for interactive multimedia retrieval” Proceedings of the IEEE.



Video summarization and browsing

e Videos are long, want a summary of each one for
exploring a large collection or result set

o Static summaries are (collections of) still images
that summarize a video

 Dynamic skims are collections of excerpts from a
longer video concatenated together



Summarization and browsing:
Key frame-based static abstracts
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e Select key frames to
display as a
“storyboard”

 For example, Ciocca
and Schettini (JRTIP,
2006)

e Pros: fast, compact,
non-linear, complete

e Cons: no audio, no
motion, hard to
understand for complex
videos


https://www.researchgate.net/profile/Gianluigi_Ciocca/publication/220243561_Erratum_to_An_innovative_algorithm_for_key_frame_extraction_in_video_summarization/links/0912f50adc7a71b19e000000.pdf

Summarization and browsing:
Skimming
e Stitch together important sections of a video

e Pros: preserves time, action, audio

* Cons: still linear, still takes time to watch

Our Summary Original
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Gygli, M., Grabner, H., Riemenschneider, H., & Van Gool, L. (2014). Creating summaries from user videos. In ECCV


https://www.youtube.com/watch?v=JPtG0Air76E

Summary

e Video retrieval 1s like image retrieval, but with
temporal coherence, context, and motion

e Video segmentation identifies more homogeneous
sequences of frames to further analyze

e Video features capture image characteristics and
motion

 Unsupervised data mining can find patterns

e Supervised classification can identify specific objects,
actions, genres, and shots
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