CISC 7610 Lecture 4
Approaches to multimedia databases

Topics:
Graph databases
Neo4) syntax and examples
Document databases
MongoDB syntax and examples
Column databases

NoSQL architectures: different
tradeoffs for different workloads

e Already seen: Generation 1
- Hadoop for batch processing on commodity hardware

- Key-value stores for distributed non-transactional processing

e This lecture: Generation 2

- Document databases for better fit with object-oriented code

e This lecture also: Generation 3
— Graph databases for modeling relationships between things

— Column stores for efficient analytics

Graph databases

Graph databases

 Most databases store information about things: key-value stores,
document databases, RDBMS

e Graph databases put the relationships between things on equal footing
with the things themselves

Examples: social networks, medical models, energy networks, access-control
systems, etc.

Can be modeling in RDBMSs using foreign keys and self-joins
- Generally hits performance issues when working with very large graphs

- SQL lacks an expressive syntax to work with graph data

Key-value stores and document databases lack joins, would treat a graph as
one document

For multimedia, store metadata in graph, data in key-value store

Movie:
The Matrix

\ Date: 1999

Directed

" Person:
Andy

Wachowski |
_ born:1967 /

Example graph

Person:

Acted in (Keanu

—

Role: Neo Reeves

_ born:1964 /

Acted in
Role: Wick

Movie:
John Wick

\ Date: 2014 /

e Graphs have

e Vertices (AKA
“nodes”)

e Edges (AKA
“relationships”)

* Both can have
“properties”

Example graph

/ Person: \

Directors

PK,FK2 | MovielD
PK,FK1 |PersoniD

Movies

PK | MovielD

MovieName
ReleaseDate

Actors

Movie: \ i i .ﬁ
. \ t I | 1
The Matrix |€—_ " " —
\ Date:1995 | ‘olesNee | Reeves
' _ born:1964 /
- __I__-"f.- --\"—.___ -___.J-
\ 4
People
. Acted in PK | PersoniD
Directed Role: Wick
ColumnName
DOB
4 A
Person: .
\ / Movie:
Andy \ - i \
. . John Wick |
. Wachowski | \ Date:2014 /
_ born:1967 / '

" - o
- —— -

PK,FK1 | PersonID
PK,FK2 | MovielD

Role

Relational schema
for movie data

Converting relational to graph-based

« Each row 1n a entity table becomes a node
e Each entity table becomes a label on nodes
e Columns on those tables become node properties

e Foreign keys become relationships to the
corresponding nodes 1n the other table

e Join tables become relationships, columns on those
tables become relationship properties

Project

title

startDate

endDate
departmentiD (FK)

Relational vs graph schema

v

Department

ID (PK)

name
parentDepartmentlD (FK)
leadPersonlD (FK)

Project_Members

Department_Members

projectlD (FK)
personiD (FK)
role

departmentlD (FK)
person|D (FK)

Person

e —

Organization

ID (PK)
entitylD (FK)
dayOfBirth

Entity

ID (PK)
name

ID (PK)
entitylD (FK)

[<—| departmentID (FK)

taxid

Relational

Graph-based

Project

title

startDate

endDate
departmentiD (FK)

Relational vs graph schema

v

Department

ID (PK)

name
parentDepartmentlD (FK)
leadPersonlD (FK)

:Project

Project_Members

Department_Members

projectlD (FK)
personiD (FK)
role

departmentlD (FK)
person|D (FK)

Person

e —

title
startDate
endDate

:Person, :Entity

Organization

ID (PK)
entitylD (FK)
dayOfBirth

Entity

ID (PK)
name

name
dayOfBirth

ID (PK)
entitylD (FK)

[<—| departmentID (FK)

taxid

Relational

:BELONGS_TO ———-.ﬁ_____\
AS_PART_OF
:Dept

name

o

(LEAD_BY ‘WORKS_AT

Graph-based

Graph databases
Issues with graphs in relational model

e SQL lacks the syntax to easily perform graph
traversal

- Especially traversals where the depth 1s unknown or
unbounded

- E.g., Kevin Bacon game, Erdos number
e Performance degrades quickly as we traverse the
graph

— Each level of traversal adds significantly to query
response time.

Example graph

e SOL query to find
actors who co-starred
with Keanu Reeves

Directors

PK,FK2 | MovielD
PK,FK1 |PersoniD

L

People Movies
PK | PersonlD PK | MovielD
ColumnName MovieName
DOB ReleaseDate
A T
Actors
PK,FK1 | PersonID

PK,FK2 | MovielD

Role

Relational schema
for movie data

Example graph

e SOL query to find
actors who co-starred
with Keanu Reeves

. 19 SELECT p2.personname, ml.movieName
FROM people pl
JOIN actors al ON (pl.personid = al.personid)
JOIN movies ml ON (al.movieid = ml.movieid)
JOIN actors a2 ON (a2.movieid = ml.movieid)
JOIN people p2 ON (p2.personid = a2.personid)
WHERE pl.personname = 'Keanu Reeves';

Directors

\ 4

PK,FK2 | MovielD
PK,FK1 |PersoniD

People

PK

PersonlD

Movies

ColumnName
DOB

PK | MovielD

A

MovieName
ReleaseDate

Actors

PK,FK1 | PersonID
PK,FK2 | MovielD

Role

Relational schema
for movie data

Issues with other database models
for graph data

e Finding co-stars requires S5-way join
- Add another 3 joins for each level deeper of query
e No syntax to allow arbitrary or unknown depth

e No syntax to expand the whole graph (unknown depth)

e Even with indexing, each join requires an index lookup for
each actor and movie

e Fast, but memory-inefficient solution: Load the tables in their
entirety into map structures in memory

e For key-value stores and document databases, graph must be
traversed in application code

Neo4j syntax and examples

Example graph database: Neo4;

e Property graph model, nodes and edges both have properties
e Neo4) 1s the most popular graph database
 Written in Java

e Easily embedded 1n any Java application or run as a
standalone server

 Supports billions of (graph) nodes, ACID compliant
transactions, and multiversion consistency.

 Implements declarative graph query language Cypher

— Query graphs in a way somewhat similar to SOL

Neo4j was used to quickly analyze the
Panama Papers leak

J & Analyzing the Panama Pz x L A

€ - C {0 & httpsi//neodj.com/blog/analyzing-panama-papers-neadj/ ¥ - @ |Q

Blog Support Campany News Contact Us

@neoqj PRODUCTS ~ SOLUTIONS ~ PARTNERS CUSTOMERS LEARN DEVELOPERS Search Q

Neo4j Blog

Analyzing the Panama Papers with Neo4j: Data
Models, Queries & More

(Neod Blog)«—[:BACK]

As the world has seen, the International Consortium of Investigative Journalists (ICl]) has exposed
highly connected networks of offshore tax structures used by the world's richest elites.

By Michael Hunger & William Lyon, Developer Relatians | April 8, 20186 e Subscribe
Reading time: 9 minutes

Upcoming Event

October 4, 2018

Webinar - Device
Tracking in Practice:
From Idea to Production
The Workshop

In this post, we look at the graph data model used by the ICl) and show how to construct it using
Cypher in Neodj, We dissect an example from the leaked data, recreating it using Cypher, and show

how the mode! could be extended.

These structures were uncovered from leaked financial documents and were analyzed by the
journalists, They extracted the metadata of documents using Apache Solr and Tika, then connected
all the infermation together using the leaked databases, creating a graph of nodes and edges in
Neodj and made it accessible using Linkurious’ visualization application,

More Events —

The structure of the leak

Neo4j uses Cypher
graph query language
e Declarative query language (like SQL)
o ASCII-Art notation for nodes and edges

e Results are graphs as well
- But can be displayed as tables

Cypher syntax: nodes/entities

 Nodes appear in
parentheses: (a), (b)

- a and bare variables that Cypher using relationship ‘likes’
can be referred to later in the s
O——@®

— Can access variables’
properties, €.g. a.name Cypher

— Can request nodes with a (a) -[:LIKES]-> (b)

specific label using colon:
a:Person

— Other properties can be
specified in braces:

(a:Person {name:"Mike"})

https://neo4j.com/developer/cypher-query-language/

Cypher syntax: edges/relationships

e Arrows for
relationships ——>

— With variables and Cypher using relationship ‘likes’
properties in square LK
brackets: @ @
- [r:LIKES]-> Cyoher

- Can include path (a) -[:LIKES]-> (b)
length:

—[r:LIKES*. .4]->

https://neo4j.com/developer/cypher-query-language/

L]

Cypher graph creation: CREAT:

* Create a Person with name property of “You”:

https://neo4j.com/developer/cypher-query-language/

L]

Cypher graph creation: CREAT:

* Create a Person with name property of “You”:
CREATE (you:Person {name:"You"})
RETURN you

https://neo4j.com/developer/cypher-query-language/

Cypher graph querying: MATCH

* Query using MATCH

— These are all equivalent for the one-node graph we just
created

MATCH (n) RETURN n;
MATCH (n:Person) RETURN n;
MATCH (n:Person {name: "You"}) RETURN n;

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation:
MATCH and CREATE

« Add a new relationship between the existing node
and a new node (you like neo, which is a Database
with name property “Neo4j”)

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation:
MATCH and CREATE

« Add a new relationship between the existing node

and a new node (you like neo, which is a Database
with name property “Neo4j”)

MATCH (you:Person {name:"You"})

CREATE (you)-[like:LIKE]->(neo:Database
{name:"Neo4j" })
RETURN you,like,neo

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation:
FOREACH to loop over things

« Add a new relationship between the existing node
and several new nodes (create new friends Johan,
Rajesh, Anna, Julia, and Andrew)

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation:
FOREACH to loop over things

« Add a new relationship between the existing node
and several new nodes (create new friends Johan,
Rajesh, Anna, Julia, and Andrew)

MATCH (you:Person {name:"You"})
FOREACH (name in

["Johan","Rajesh","Anna","Julia","Andrew"] |
CREATE (you)-[:FRIEND]->(:Person {name:name}))

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation

e Create new relationship between two existing
entities (Anna has worked_with Neo4j)

3) Rajesh
3 @ /.
Johan G &
\ﬁ“o
R‘HJEND & s
?9\6“0 U;(E
o -

&@/ \ﬁi«\
@4, /o o qgo e

https://neo4;j .com/developer/cypher%ery-language/

Cypher graph creation

e Create new relationship between two existing entities (Anna has
worked_with Neo4j)
MATCH (neo:Database {name:"Neo4j"})
MATCH (anna:Person {name:"Anna"})
CREATE (anna)-[:FRIEND]->(:Person:Expert
{name: "Amanda"})-[:WORKED WITH]->(neo)

https://neo4;j .com/developer/cypher%ery-language/

Cypher graph querying

e Find shortest friend-of-a-friend path to someone
in your network who can help you learn Neo4;

https://neodj.com/developer/cypher-query-language/

Cypher graph querying

e Find shortest friend-of-a-friend path to someone
in your network who can help you learn Neo4;
MATCH (you {name:"You"})

MATCH (expert)-[:WORKED _WITH]->(db:Database
{name:"Neo4j"})

MATCH path = shortestPath((you)-[:FRIENDx*..5]-
(expert))

RETURN db,expert,path

https://neodj.com/developer/cypher-query-language/

Example graph database: Neo4;
Create example graph

CREATE (TheMatrix:Movie {title:'The Matrix',
released:1999, tagline:'Welcome to the Real World'})

CREATE (JohnWick:Movie {title:'John Wick', released:2014,
tagline:'Silliest Keanu movie ever'})

CREATE (Keanu:Person {name:'Keanu Reeves', born:1904})
CREATE (AndyW:Person {name:'Andy Wachowski', born:1967})
CREATE

(Keanu) - [:ACTED IN {roles:['Neo']}]->(TheMatrix),
(Keanu) - [:ACTED IN {roles:['John Wick']}]->(JohnWick),
(AndyW) - [: DIRECTED] -> (TheMatrix)

Example graph database: Neo4j
Retrieve info on one node

MATCH (keanu:Person {name:"Keanu Reeves'"})
RETURN keanu;

Bigger graph database in Neo4;
Find all co-stars of Keanu

MATCH (kenau:Person {name:"Keanu Reeves"}) -
[:ACTED IN]- (movie)<-[:ACTED IN]-(coStar) RETURN
coStar.name;

"Jack Nicholson"

"Diane Keaton"

| |
| |
| "Dina Meyer" |
| "Ice-T" |
| |

"Takeshi Kitano"

Bigger graph database in Neo4;
Find all nodes within 2 hops of Keanu

MATCH (kenau:Person {name:"Keanu Reeves"})-[*1..2]-
(related) RETURN distinct related;

- |
| related |
- |
| Node[0] {title:"The Matrix",released:1999, tagline:..} |
| Node[7] {name:"Joel Silver",born:1952} |
| Node[5] {name:"Andy Wachowski",born:1967} |
| Node[6] {name:"Lana Wachowski",born:1965} |
.. |

Bigger graph database in Neo4;
Results are graphs too

[+

4=

B
"

» MATCH [(kenau rson {name:"Keanu Heeves"])l=["l..2]-{related) BRETURN Xenau,ralated;

o --
Sl 17 | Acren) | omecTeDiio) | FoLLowsia | produceni) | revieweoes | weoreii)

%1/ y.

ll]EL'lﬂ':!

Bigger graph database in Neo4;
Demo

' 3 - = ——— »
+ MATCH (kenau:Person {name:"Keanu Heseves"])=["l..2]-({related) RETURN Xenau,relatad; -.".'- ; v

v € CID CD
Sl ") | #cep_wzn) | omecTenio | Fouiowsia | produceni | revieweos | wroreii)

B il Angeta
i \ 3
\ ‘i &
"0 4y

Riris Langton B

Graph database internals:
Index-free adjacency

e Graph processing can be performed on databases irrespective of their internal
storage format

— It 1s a logical model, not a specific implementation

« Efficient real-time graph processing requires moving through graph without index
lookups

— Referred to as index-free adjacency

 In RDBMS, indexes allow logical key values to be translated to a physical addresses
— Typically, three or four logical IO operations are required to traverse a B-Tree index
— Plus another lookup to retrieve the value

— Can be cached, but usually some disk IO required

 In a native graph database utilizing index-free adjacency, each node knows the
physical location of all adjacent nodes

— So no need to use indexes to efficiently navigate the graph

Graph compute engines:
Add graph interface on other models

 Implements efficient graph processing algorithms
o Exposes graph APIs

 Doesn’t necessarily store data in index free adjacency graph

— Usually designed for batch processing of most or all of a graph

e Significant examples:
- Apache Giraph: graph processing on Hadoop using MapReduce

— GraphX: graph processing part in Spark (part of Berkeley Data
Analytic Stack)

- Titan: graph processing on Big Data storage engines like Hbase
and Cassandra

Graph databases
Strengths and weaknesses
e Strengths

— Joins are precomputed
- Flexible schema

— Fast and scalable

e Weaknesses

- Harder to execute queries not embodied in
relationships

Document databases

Document databases

e Non-relational database that stores data as structured
documents

— Usually XML or JSON formats

 Doesn’t imply anything specific beyond the document
storage model

e Could implement ACID transactions, etc

- Most provide modest transactional support
* Try to remove object-relational impedance mismatch

e Easy to incorporate media in documents

JSON-based document databases
flourished starting in 2008

e Address the conflict between object-oriented
programming and the relational database model

e Self-describing document formats could be
interrogated independently of the program that
had created them

o Aligned well with the dominant web-based
programming paradigms

JSON databases

« Not a single specification, just store data in JSON format, but usually

e Basic unit of storage is the Document = a row in an RDBMS
— One or more key-value pairs
— May also contain nested documents and arrays

- Arrays may also contain documents, creating complex hierarchical structure

e A collection or bucket is a set of documents sharing some common purpose
- = a relational table
— Documents in a collection don’t have to be the same type

e Could implement 3 normal form schema
— But usually model data in a smaller number of collections

— With nested documents representing master-detail relationships

value

JSON format

object

array

true

false

null

Example JSON structure
from homework

"url": "https:\/\/farmb.staticflickr.com\/4469\/23531804118_fce6162cdl. jpg",
"response": {
"labelAnnotations": [
{
"score": 0.85065764188766,
"mid": "\/m\/07yv9",
"description": "vehicle"

1,

1,
"webDetection": {
"fullMatchingImages": [
{
"url": "https:\/\/farmé6.staticflickr.com\/5079\/7403056606_a09f6£670e_b.jpg"
},

1,
"pagesWithMatchingImages": [
{

"url": "http:\/\/picssr.com\/photos\/32622429@N02\/favorites\/pagel1097nsid=32622429@N02"
}’

1,
"webEntities": [
{
"score": 3.0824000835419,
"entityId": "\/m\/02vqfm",
"description": "Coffee"

1,

1,
"partialMatchingImages": [
{
"url": "https:\/\/farm6.staticflickr.com\/5079\/7403056606_a09f6£670e_b.jpg"
1,

MongoDB syntax and examples

MongoDB Create operations

db.users.insertOne(«— collection
{

name: "sue”, <+—— field: value
age: 26, <+— field: value document
status: "pending” 4—— field: value

}
)

e Several commands: insertOne(), insertMany(), and
save()

» save() will update an existing document if found
or insert a new one 1f not

https://docs.mongodb.com/manual/crud/#crud

MongoDB Search operations

db.users.find(<«—— collection
{ age: { $gt: 18 } }, <+—— query criteria
{ name: 1, address: 1 } <—— projection

). 1imit(5) <«—— cursor modifier

e Select documents matching certain criteria
e Project to only the fields of interest

e Cursor modifiers include count(), limit(), skip(),
sort()

https://docs.mongodb.com/manual/crud/#crud

MongoDB Aggregation

e Aggregation allows you to perform more complex
queries

 Three interfaces
- Aggregation Pipeline
- Map-Reduce

- Single-purpose aggregation operations

MongoDB Aggregation pipeline ex

Collection

db.orders.aggregate([
$match stage—» { $match: { status: "A" } 3},

$group stage— { $group: { _id: "$cust_id”,total: { $sum: "$amount” } } }

1)
{
cust_id: "A123",
amount: 500,
status: "A"
) ¢ cust_id: "A123"
amount: 500, Results
{ status: "A"
cust_id: "A123", } {
amount: 250, _id: "A123",
status: "A" total: 750
} { }
cust_id: "A123",
($match > :1‘2‘;82 Zf\@ $group >
cust_id: "B212", } (
amount: 200, _id: "B212",
status: "A" total: 200
) t e)
cust_id: "B212",
amount: 200,
{ status: "A"
cust_id: "A123",)}
amount: 300,
status: "D"
}

orders

https://docs.mongodb.com/manual/aggregation/

MongoDB Aggregation pipeline

* Provide a sequence of stages of processing

- Each stage uses one command below, modifies or
filters the selected documents, results fed into next

- Like a pipeline in a unix shell

Operator

$project
$match
$group
$sort
$skip
$limit

$unwind

Operation
Select a subset of fields from documents
Discard documents not matching provided criteria
Aggregate documents based on keys with various summaries
Order the results
Omit the documents from the beginning of the results
Limit results to only this number

Enter arrays and process nested documents

httn<//www tititorialenoint com/monaodb/monaodb aocareaation htm

MongoDB Map-Reduce ex

Collection

db.orders.mapReduce(
map — function() { emit(this.cust_id, this.amount); 1},

reduce — function(key, values) { return Array.sum(values) },
{

query —» query: { status: "A" 3},

output —» out: "order_totals”

k;
)
{
cust_id: "A123",
amount: 500,
status: "A"
} { —
cust_id: "A123",
amount: 500,
{ status: "A"
cust_id: "A123", 3} {
amount: 250 _id: "A123",
status: "A”, {"A123": [500, 250]} _> value: 750
) (reduce }
cust_id: "A123",
amount: 250, _>
{ query> status: "A" map
cust_id: "B212",)} {
amount: 200, { EB2i2E : 200} —p- | _id: "B212",
status: "A" value: 200
) { S)
cust_id: "B212",
amount: 200,
{ status: "A” order_totals
cust_id: "A123", h
amount: 300,
status: "D"
}

https://docs.mongodb.com/manual/aggregation/#map-reduce

orders

MongoDB Single-purpose
aggregation functions

b Collection
L LeSS fleXIble db.ordgrs.distinct("cust_id")

 But easier to use

aaaaa t: 500,
status: "A"

e Two functions:

cust_id: "A123",
aaaaa t: 250,

— db.collection.count()

— db.collection.distinct() |

aaaaa t: 200,
status: "A"

P ["A123", "B212"]

cust_id: "A123",
aaaaa t: 300,
status: "D"

orders

https://docs.mongodb.com/manual/aggregation/#single-purpose-aggregation-operations

Example JSON database

® RelatiOIlal SChema PK |Actorld | ——— ppx) ;Trt:lr

o

AAAAAAAA

Example JSON database

e Relational schema

« Example JSON
database

e Uses typical
“Document
embedding”

e Mirrors OO
design

Film Document

oy

”_i r:l L1}

Actors

PK | Actorld

ActorName

o

¥y THEELE

FilmActors

PK,FK1 | Actorld
PK,FK2 | Filmid

"BRIDE INTRIGUE",

"Category"

"Actors™

[

{

n

"actorld":

Ty o e e T T
actorlid™ .

"Action",

"Name"

"ANGELA HUDSON"

"CAMPUS REMEMBER",

Nrctign™,

Actor document

"REESE KILMER" },
"WILL WILSON" }

"BULL SHAWSHANK",
“"Action",

"Name"

lr':.\]ame L]

"NICK WAHLBERG"

"SANDRA

KILMER"

PK

Title
Category

}

e
J

]

=" : "MATTHEW JOHANSSON" 1},

siojoe
jo Aewy

]

uoI123||0)

Example JSON database
Document linking

e Could instead use

document linking et A0 |
to list of actor ;

documents

I ST . B

Example JSON database
Document linking

e Could instead use

document linking
to list of actor

v ¥ . ¥

documents

e Or could use relational-

style document linking, T e e
closer to 37 normal form

e Less natural for document L

DB because of lack of joins B ey

Example document DB: MongoDB

BE Grd | [5 JSON

Query with JavaScript

=) Toad Extension - - Eclipse - A
Eile Edt Mavigate 5Segrch Project Bun Window Help
e T G I4_:I.'I l; > GO - - F . =l 9| %J Java |0y Toad Extension | Git +% Debug Chuick
o) "Workshest 4 B0 Py = [0 8% Workshest 2 sq oy gquenpsgl 51 1 *Workchest 4 L =
2 Connection: ec2-1/sakila (connected) [Shell actrve database: sakila] Connection: root@ec2-1/sakids (connected)
| W | S5 | (Ll | | S == AR Ml =2)=
& B 1=BELECT title, descriptio
f_j FROM actor
' JOIN film_actor USING (actor _id)
& JOIN film USING (Ffilm id)
Ee 5 WHERE last_name = 'FAWCETT'
= AND first name = "BOB'
I: ORDER BY tit

title description £
e A Astounding Epistle of a Database Administrator &
ADAPTATION HOLES & Astounding Reflection of & Lumberjack And a Ca
CHINATOWN GLADMATOR A Bollant Panorama of & Techrnical Writer And a Lu
CIRCUS YOUTH A Thoughtful Drama of a Pastry Chef And a Dentist
COMTROL ANTHEM A& Fateful Documentary of a Robot And a Student w
DARES PLUTOD & Fateful Story of a Bobot And a Dentist who must
CARMN FORRESTER & Fateful Story of a A Shark And a Explorer who mu
DAZED PUNK A Action-Pached Story of a Pioneer And a Technica
DYNAMITE TARZAN A& Intrepid Documentary of a Forensic Psychologist
HATE HANDICAP & Intrepid Reflection of 2 Mad Screntist And a Prom
HOMICIDE PEACH A Astounding Documentary of a Hunter And 2 Bay
JACKET FRISCO A Insightful Reflection of a Womanizer And a Husb
JUMAN BLADE & Intrepid Yamn of a Husband And a Womanizer wh

1 AW ESS VISR A IncinhHful Warn of & Rou And s Soomn Wesetlar sk

=

Example document DB: MongoDB

Query with JavaScript

Toad Extension - - Eclipse - B

| File Edit Mavigate 3Segrch Project Run Window Help

-_.'.'-"-_i“.-- IELII l%v # &G =

1}' - lllfJ'_--"_l. -

3 =
=

qrey 5 e
sty Workshest 4 5]

Connection: ec2-1/sakila (connected) [Shell actrve database: sakila]

b - % | % ||t |
] db.films. i jE“ o
{ Actors: { $elemMatch:
{"First name":"B0OB",
"Last name": "FAWCETT" } } },

S {"Title":1,"Description":1})
csort({"Title":1})

HE Grid | [5 J1SON

-

| & Jova 0@y Toed Bxtension Ll Git 4% Debug Quick s

15 Workshest 2 sq =1 quarysgl B [T "Wiorkshest & L =
'f.:DI'II'ItI:tI'l‘.lﬂ:!Dﬂtﬂ'lltcz'hid'krldIl:l:'rll‘rl:l:tll.‘d:l_) -
R I ==
B 1=BELECT title, descriptio
FROM actor
JOIN film actor USING (actor id)
4 J0IN film USING (film id)
WHERE last name = '"FAWCETT'
ANE first_name = "BOB'
ORDER BY titl
title description ~

L ACE GOLDFIMGER A Astounding Epistle of a Database Administrator &

ADAPTATION HOLES & Astounding Reflection of & Lumberjack And a Ca
CHINATOWN GLADMATOR A Bollant Panorama of & Techrnical Writer And a Lu
CIRCUS YOUTH A Thoughtful Drama of a Pastry Chef And a Dentist
COMTROL ANTHEM A& Fateful Documentary of a Robot And a Student w

DARES PLUTO & Fateful Story of a Robot And a Dentist who must

CARMN FORRESTER & Fateful Story of a A Shark And a Explorer who mu
DAZED PUNK A Action-Pached Story of a Pioneer And a Technica
DYNAMITE TARZAN A& Intrepid Documentary of a Forensic Psychologist

HATE HANDICAP & Intrepid Reflection of 2 Mad Screntist And a Prom
HOMICIDE PEACH A Astounding Documentary of a Hunter And 2 Bay
JACKET FRISCO A Insightful Reflection of a Womanizer And a Husb
JUMAN BLADE & Intrepid Yamn of a Husband And a Womanizer wh

1 AW ESS VISR A IncinhHful Warn of & Rou And s Soomn Wesetlar sk

Example document DB: MongoDB
Query with JavaScript

= Toad Extension - - Eclipse =
| Eile Edit Mavigate Segrch Project Rum Window Help
M=l R B G A ¥ A = = | & Jeva [y Toed Bxtension Ll Git 4% Debug Quick
= o] "Workshestd T1 Mg = 0O % Workshest 25q = querpsgl 51 [T "Workshest 4 e =0
s Connection: ec2-1/sakila I_cnrrn:::tcd] E'ShFII active database: sakila) Connection: root@ec2-1/sakids (connected)
bol m % % | R 58l v [EWE
& db. films. find(N 1=BELECT title, description
2 { Actors: { $elemMatch: FROM actor
i {"First name":;"BOB", JOIN film_actor USING (actor id)
= "Last name": “"FAWCETT" } } }, 4 JOIN film USING (film_id)
e 5 {"Title":1,"Description™:1}) WHERE last name = 'FAWCETT'
@ Lsort{{"Title":1}) AND i me = "BOB'
: ORDER BY titl
il
BI Gnd | [E] 1SON title description A
/It e e A Astounding Epistle of a Database Administrator &
{ ADAPTATION HOLES & Astounding Reflection of & Lumberjack And a Ca
"_id": 2, CHINATOWN GLADIATOR A Brilliant Pancrama of a Technical Writer &nd a Lu
“Description”: "A Astound ' of a Da CIRCUS YOUTH A Thoughtful Drama of a Pastry Chef And a Dentist
"Title": “ACE GOLDFINGER" CONTROL ANTHEM A Fateful Documentary of a Robot And a Student w
} DARES PLUTO & Fateful Story of a Robot And a Dentist who must
CARMN FORRESTER & Fateful Story of a A Shark And a Explorer who mu
) DAZED PUNK A Action-Pached Story of a Pioneer And a Technica
{ DYNAMITE TARZAN A& Intrepid Documentary of a Forensic Psychologist
"y 3 HATE HANDICAP & Intrepid Reflection of 2 Mad Screntist And a Prom
"Description”: "A Astounding Reflection HOMICIDE PEACH A Astounding Documentary of a Hunter And 2 Bay
“Title™: “ADAPTATION HOLES" JACKET FRISCO A Insightful Reflection of a Womanizer And a Husb
} JUMAN BLADE & Intrepid Yamn of a Husband And a Womanizer wh

14 1 AW ERS WARIMM

A IncinhHful Warn of & Rou And s Soomn Wesetlar sk

Document database summary

e Like a key-value store, but with self-documenting
values

e [.ike a traditional RDBMS, but more scalable, less
mis-match with object-oriented programming

e Many types of databases are adding support for
JSON, so a “JSON document database” might soon
be a feature of other databases instead of a
distinct type of database

Document databases
Strengths and weaknesses

e Strengths
- Self-documenting schema
— Easier for non-programmers to query

— Can offer availability instead of strict consistency

 Weaknesses
- Typically weak transactional support

- Joins implemented in application code

Column databases

Column databases

e RDBMs is tuned for OLTP: OnLine Transaction
Processing

— Data in relations are organized by row (tuple)
— All data 1n a row are stored together

 Data warehouses used for analytics present a different
workload: OLAP: OnLine Analytic Processing

- Aggregate information over many records to provide insight
into trends

- Organizing relations by column has several advantages

Data warehousing

e In the 1970s, OLTP happened 1n real time, reports
were generated 1n batches overnight

e In the 1980s and 90s, RDBMs started to be used
for generating reports in real-time 1n parallel to
the OLTP systems

— Known as data warehouses

- Star schema de-normalizes data somewhat to provide
real-time responses

Star Schema
For RDBMS data warehouse

AR e Large central “fact” table
Store TimelD
PK | StorelD Dats — Measurements or metrics
Storchogion Month of each event
Other SalesFact Year
A ustomer ‘C 1 1 ,,
roet | tamer T e Smaller “dimension
PK,FK3 | ProductID
PK,FK4 | TimelD tableS
Quantit R R
;:;un: — Attributes to describe
v l facts
ProductDimension CustomerDimension .
PK | ProductiD PK | CustomerlD ® Stlll CPU and I/O
ProdctCatosory b Intensive to use
Other Phone
Other

Instead: Column Databases
Store relations by column

Bock |ID Name DOB Salary Sales Expenses

1 1001 |Dick 21/12/1960 |67.000 78980 3244
|2 1002 |Jane 12/12/1955 |55,000 [67840 2333

4 1004 Dan 15/03/1975 |65,200 Q8770 2345

5 1005 |[Steven [1¥/11/1981 |[76,000 [43240 3214

Row-oriented storage

D08 Tsaiary __Tsaios __Jespenses |

1004 Dick 2412110680 7. 000 18880 3244

1002 Jane | 12121055 55,000 67840 2333

007 Rober | 177027050 X000 67800 510 Tabular data

1004 Dan 15/03/1975 &5200 98770 2345

1005 Seven | 10114981 7,000 43240 3214
Columnar storage
Hock
1 Dick Jane Robert Dan Seven
2 2112/1960 |12/12/1955 |17/02/1980 |15/03/1975 [11/11/1981
3 el aee——{a5 a6t FEoee——{7a0e
3 78080 |67840 [67890 |98770 43240
5 3244 2333 5436 2345 3214

Column database advantages

“"-_‘ Block ID Name DOB Salary Sales Expenses
\ [1001 |Dick 21712 67000 |f8980 [3244
. | 2 1002 |[Jane 12/12pee4|55,000 |F7840 |2333
| | B 1003 |Robert [177074+eed|22,000 |}7890 [6436
k /// 3 1004 [Dan 15/0 Jaaied |65.200 |P8770 |2345
\ 5 1005 [Seven |1011jaaad|76,000 |F3240 |3214
\
\

/
/

Storage in row format

h 4

SELECT SUM(salary)
FROM saleperson

l

Storage in columnar format

’f'j \\‘-\ Block

| .,“1 1 Dick Jane Robert Dan Steven

f o [2 21/12/1960 [12/12/1955 [17/02/1980 |15/03/1975 [11/11/1981
|

i J 1‘. CoU .ﬁ. vava =g v o v oo

\ 4 78980 67840 67890 98770 43240
\\\\/ 5 3244 2333 6436 2345 3214

 Two main advantages

o Acceleration of
aggregation queries

— Because data are stored
together

e Better data
compression

- Because similar data
are stored together

Column database disadvantages

e e e e Slower to insert
1001 Dick 21/12/1960 |67,000 |78980 3244 "'.‘

1002 |Jane |12/12/1955 |55,000 |67840 |2333 |
1003 |Robert |17/02/1980 |22,000 |67800 |6436
1004 |Dan 15/03/1975 [65,200 [98770 |2345
1005 [Jeven |11/11/1981 |76,000 |43240 |3214

Lr\.::..t_..)!\)#g

- RDBMS requires one

/ IO to 1nsert a row

Row-oriented storage

— Column database could
INSERT INTO saleperson re(l]-]»ire One per COlumn

e Inserts are generally
batched across a

Columnar storage

T

Block \\
1 Dick Jane Robert Dan Steven \‘-. b f
2 21/12/1960 [12/12/1955 |17/02/1980 |15/03/1975 |11/11/1981 ‘. num er O rOWS
3 67,000 55,000 22,000 65,200 76,000 .‘
4 78980 67840 67890 98770 43240 |
5 3244 2333 6436 2345 3214 /"‘
/

C-store is a column store
with a row-based cache

| e Column store 1s

Highly Compressed

i v bulk-loaded
: periodically

Y

Pkt 2 Delta-store is
updated in real-time

—~ A _
\ 4 ‘2) Queries combine results

) Asynchronous{Tuple Mover 7 from both stores P Quer ieS Combine
vt gh- ~——|—> results from both

velocity inserts —————»
and updates 1 =

Write-Optimized Delta store o Company Vert ica

Memory resident . o .
Uncompressed 1 d t
Optimized for high-frequency writes Commerc la lze 1
Possibly row oriented

Data are stored as “Projections”

T e Columns that are accessed
B C C 743

o b e together can be stored
e together

Table appears to user in relational normal form

e Workload-dependent

Region |A |B D [C |A
Customerls_[c |F Jc |§ — Can be created manually
Product |C C D A B

Sales 789 743| 675/ 23| 654

g — Or on the fly by the query

Default projection unsorted columnar storage of all

» columns. Used to resolve queries that have no Optim iZ er

specific supporting projection
— Or 1n bulk based on

Region & A - = ISort Columns
Product |B C C A D . .
N — historical workloads

(2)Projection 1

"~ This might support query: . . .
” SELECT Region, Product, SUM(Sales) ® lee lndexes 1n RDBMS

GROUP BY Region, Product

CustomerC _|C |F_[6_[R_ |3 SortcColumn

Sales 743| 23| 675| 789| 654
(3)Projection 2
" This might support query:

” SELECT Customer, SUM(Sales)
GROUP BY Customer

Column store summary

e Designed for data warehousing and analytics
e Re-organize data for compression and aggregation
e Can be “added on” as feature to other DB systems

e Significant component 1in some in-memory DBs
— For analytics applications (SAP HANA)

 For multimedia, store metadata in column store,
media 1n key-value store

Column store
Strengths and weaknesses

e Strengths
- Fast aggregations

- Efficient compression

e Weaknesses

- Vanilla model expensive to insert one row

Summary

e NoSQL architectures utilize different tradeoffs for
different workloads

 Document databases for better fit with object-
oriented code

e Graph databases for modeling relationships
between things

e Column stores for efficient analytics

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

