
  

CISC 7610 Lecture 4
Approaches to multimedia databases

Topics:
Graph databases

Neo4j syntax and examples
Document databases

MongoDB syntax and examples
Column databases



  

NoSQL architectures: different 
tradeoffs for different workloads

● Already seen: Generation 1
– Hadoop for batch processing on commodity hardware

– Key-value stores for distributed non-transactional processing

● This lecture: Generation 2
– Document databases for better fit with object-oriented code

● This lecture also: Generation 3
– Graph databases for modeling relationships between things

– Column stores for efficient analytics



  

Graph databases



  

Graph databases

● Most databases store information about things: key-value stores, 
document databases, RDBMS

● Graph databases put the relationships between things on equal footing 
with the things themselves

● Examples: social networks, medical models, energy networks, access-control 
systems, etc.

● Can be modeling in RDBMSs using foreign keys and self-joins 
– Generally hits performance issues when working with very large graphs

– SQL lacks an expressive syntax to work with graph data

● Key-value stores and document databases lack joins, would treat a graph as 
one document

● For multimedia, store metadata in graph, data in key-value store



  

Example graph

● Graphs have

● Vertices (AKA 
“nodes”)

● Edges (AKA 
“relationships”)

● Both can have 
“properties”



  

Example graph

Relational schema 
for movie data



  

Converting relational to graph-based

● Each row in a entity table becomes a node

● Each entity table becomes a label on nodes

● Columns on those tables become node properties

● Foreign keys become relationships to the 
corresponding nodes in the other table

● Join tables become relationships, columns on those 
tables become relationship properties



  

Relational vs graph schema

Relational Graph-based



  

Relational vs graph schema

Relational Graph-based



  

Graph databases
Issues with graphs in relational model
● SQL lacks the syntax to easily perform graph 

traversal
– Especially traversals where the depth is unknown or 

unbounded

– E.g., Kevin Bacon game, Erdos number

● Performance degrades quickly as we traverse the 
graph
– Each level of traversal adds significantly to query 

response time.



  

Example graph

● SQL query to find 
actors who co-starred 
with Keanu Reeves

Relational schema 
for movie data



  

Example graph

● SQL query to find 
actors who co-starred 
with Keanu Reeves

Relational schema 
for movie data



  

Issues with other database models 
for graph data

● Finding co-stars requires 5-way join
– Add another 3 joins for each level deeper of query

● No syntax to allow arbitrary or unknown depth

● No syntax to expand the whole graph (unknown depth)

● Even with indexing, each join requires an index lookup for 
each actor and movie

● Fast, but memory-inefficient solution: Load the tables in their 
entirety into map structures in memory

● For key-value stores and document databases, graph must be 
traversed in application code



  

Neo4j syntax and examples



  

Example graph database: Neo4j

● Property graph model, nodes and edges both have properties

● Neo4j is the most popular graph database

● Written in Java

● Easily embedded in any Java application or run as a 
standalone server

● Supports billions of (graph) nodes, ACID compliant 
transactions, and multiversion consistency.

● Implements declarative graph query language Cypher
– Query graphs in a way somewhat similar to SQL



  

Neo4j was used to quickly analyze the 
Panama Papers leak



  

Neo4j uses Cypher 
graph query language

● Declarative query language (like SQL)

● ASCII-Art notation for nodes and edges

● Results are graphs as well
– But can be displayed as tables



  

Cypher syntax: nodes/entities

● Nodes appear in 
parentheses: (a), (b)

– a and b are variables that 
can be referred to later in the 
query

– Can access variables’ 
properties, e.g. a.name

– Can request nodes with a 
specific label using colon: 

a:Person

– Other properties can be 
specified in braces: 

(a:Person {name:”Mike”})

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher syntax: edges/relationships

● Arrows for 
relationships -->

– With variables and 
properties in square 
brackets: 
-[r:LIKES]->

– Can include path 
length: 

-[r:LIKES*..4]->

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph creation: CREATE

● Create a Person with name property of “You”:

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph creation: CREATE

● Create a Person with name property of “You”:

CREATE (you:Person {name:"You"})

RETURN you

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph querying: MATCH

● Query using MATCH

– These are all equivalent for the one-node graph we just 
created

MATCH (n) RETURN n;

MATCH (n:Person) RETURN n;

MATCH (n:Person {name: “You”}) RETURN n;

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph creation: 

MATCH and CREATE
● Add a new relationship between the existing node 

and a new node (you like neo, which is a Database 
with name property “Neo4j”)

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph creation: 

MATCH and CREATE
● Add a new relationship between the existing node 

and a new node (you like neo, which is a Database 
with name property “Neo4j”)

MATCH  (you:Person {name:"You"})

CREATE (you)-[like:LIKE]->(neo:Database 

{name:"Neo4j" })

RETURN you,like,neo

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph creation: 

FOREACH to loop over things
● Add a new relationship between the existing node 

and several new nodes (create new friends Johan, 
Rajesh, Anna, Julia, and Andrew)

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph creation: 

FOREACH to loop over things
● Add a new relationship between the existing node 

and several new nodes (create new friends Johan, 
Rajesh, Anna, Julia, and Andrew)

MATCH (you:Person {name:"You"})

FOREACH (name in 

["Johan","Rajesh","Anna","Julia","Andrew"] |

  CREATE (you)-[:FRIEND]->(:Person {name:name}))

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph creation

● Create new relationship between two existing 
entities (Anna has worked_with Neo4j)

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph creation

● Create new relationship between two existing entities (Anna has 
worked_with Neo4j)

MATCH (neo:Database {name:"Neo4j"})

MATCH (anna:Person {name:"Anna"})

CREATE (anna)-[:FRIEND]->(:Person:Expert 

{name:"Amanda"})-[:WORKED_WITH]->(neo)

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph querying

● Find shortest friend-of-a-friend path to  someone 
in your network who can help you learn Neo4j

https://neo4j.com/developer/cypher-query-language/ 



  

Cypher graph querying

● Find shortest friend-of-a-friend path to  someone 
in your network who can help you learn Neo4j
MATCH (you {name:"You"})

MATCH (expert)-[:WORKED_WITH]->(db:Database 

{name:"Neo4j"})

MATCH path = shortestPath( (you)-[:FRIEND*..5]-

(expert) )

RETURN db,expert,path

https://neo4j.com/developer/cypher-query-language/ 



  

Example graph database: Neo4j
Create example graph

CREATE (TheMatrix:Movie {title:'The Matrix', 

released:1999, tagline:'Welcome to the Real World'})

CREATE (JohnWick:Movie {title:'John Wick', released:2014, 

tagline:'Silliest Keanu movie ever'})

CREATE (Keanu:Person {name:'Keanu Reeves', born:1964})

CREATE (AndyW:Person {name:'Andy Wachowski', born:1967})

CREATE

(Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrix),

(Keanu)-[:ACTED_IN {roles:['John Wick']}]->(JohnWick),

(AndyW)-[:DIRECTED]->(TheMatrix)



  

Example graph database: Neo4j
Retrieve info on one node

MATCH (keanu:Person {name:"Keanu Reeves"}) 

RETURN keanu;

+----------------------------------------+

| keanu                                  |

+----------------------------------------+

| Node[1]{name:"Keanu Reeves",born:1964} |

+----------------------------------------+



  

Bigger graph database in Neo4j
Find all co-stars of Keanu

MATCH (kenau:Person {name:"Keanu Reeves"})-

[:ACTED_IN]→(movie)<-[:ACTED_IN]-(coStar) RETURN 

coStar.name;

+----------------------+

| coStar.name          |

+----------------------+

| "Jack Nicholson"     |

| "Diane Keaton"       |

| "Dina Meyer"         |

| "Ice-T"              |

| "Takeshi Kitano"     |



  

Bigger graph database in Neo4j
Find all nodes within 2 hops of Keanu
MATCH (kenau:Person {name:"Keanu Reeves"})-[*1..2]-

(related) RETURN distinct related;

+------------------------------------------------------|

| related                                              |

+------------------------------------------------------|

| Node[0]{title:"The Matrix",released:1999, tagline:…} |

| Node[7]{name:"Joel Silver",born:1952}                |

| Node[5]{name:"Andy Wachowski",born:1967}             |

| Node[6]{name:"Lana Wachowski",born:1965}             |

| …                                                    |



  

Bigger graph database in Neo4j
Results are graphs too



  

Bigger graph database in Neo4j
Demo



  

Graph database internals: 
Index-free adjacency

● Graph processing can be performed on databases irrespective of their internal 
storage format
– It is a logical model, not a specific implementation

● Efficient real-time graph processing requires moving through graph without index 
lookups
– Referred to as index-free adjacency

● In RDBMS, indexes allow logical key values to be translated to a physical addresses
– Typically, three or four logical IO operations are required to traverse a B-Tree index

– Plus another lookup to retrieve the value

– Can be cached, but usually some disk IO required

● In a native graph database utilizing index-free adjacency, each node knows the 
physical location of all adjacent nodes
– So no need to use indexes to efficiently navigate the graph



  

Graph compute engines:
Add graph interface on other models

● Implements efficient graph processing algorithms 

● Exposes graph APIs

● Doesn’t necessarily store data in index free adjacency graph
– Usually designed for batch processing of most or all of a graph

● Significant examples:
– Apache Giraph: graph processing on Hadoop using MapReduce

– GraphX: graph processing part in Spark (part of Berkeley Data 
Analytic Stack)

– Titan: graph processing on Big Data storage engines like Hbase 
and Cassandra



  

Graph databases
Strengths and weaknesses

● Strengths
– Joins are precomputed

– Flexible schema

– Fast and scalable 

● Weaknesses
– Harder to execute queries not embodied in 

relationships



  

Document databases



  

Document databases

● Non-relational database that stores data as structured 
documents
– Usually XML or JSON formats

● Doesn’t imply anything specific beyond the document 
storage model

● Could implement ACID transactions, etc
– Most provide modest transactional support

● Try to remove object-relational impedance mismatch

● Easy to incorporate media in documents



  

JSON-based document databases 
flourished starting in 2008 

● Address the conflict between object-oriented 
programming and the relational database model

● Self-describing document formats could be 
interrogated independently of the program that 
had created them

● Aligned well with the dominant web-based 
programming paradigms



  

JSON databases

● Not a single specification, just store data in JSON format, but usually

● Basic unit of storage is the Document ⋲ a row in an RDBMS
– One or more key-value pairs

– May also contain nested documents and arrays 

– Arrays may also contain documents, creating complex hierarchical structure

● A collection or bucket is a set of documents sharing some common purpose
– ⋲ a relational table

– Documents in a collection don’t have to be the same type

● Could implement 3rd normal form schema
– But usually model data in a smaller number of collections

– With nested documents representing master-detail relationships



  

JSON format



  

Example JSON structure 
(from homework)

{

  "url": "https:\/\/farm5.staticflickr.com\/4469\/23531804118_fce6162cd1.jpg",

  "response": {

    "labelAnnotations": [

      {

        "score": 0.85065764188766,

        "mid": "\/m\/07yv9",

        "description": "vehicle"

      },

      ...

    ],

    "webDetection": {

      "fullMatchingImages": [

        {

          "url": "https:\/\/farm6.staticflickr.com\/5079\/7403056606_a09f6f670e_b.jpg"

        },

        ...

      ],

      "pagesWithMatchingImages": [

        {

          "url": "http:\/\/picssr.com\/photos\/32622429@N02\/favorites\/page109?nsid=32622429@N02"

        },

        ...

      ],

      "webEntities": [

        {

          "score": 3.0824000835419,

          "entityId": "\/m\/02vqfm",

          "description": "Coffee"

        },

        ...

      ],

      "partialMatchingImages": [

        {

          "url": "https:\/\/farm6.staticflickr.com\/5079\/7403056606_a09f6f670e_b.jpg"

        },

        ...

      ]

    },



  

MongoDB syntax and examples



  

MongoDB Create operations

● Several commands: insertOne(), insertMany(), and 
 save()

● save() will update an existing document if found 
or insert a new one if not

https://docs.mongodb.com/manual/crud/#crud 



  

MongoDB Search operations

● Select documents matching certain criteria

● Project to only the fields of interest

● Cursor modifiers include count(), limit(), skip(), 
sort()

https://docs.mongodb.com/manual/crud/#crud 



  

MongoDB Aggregation

● Aggregation allows you to perform more complex 
queries

● Three interfaces
– Aggregation Pipeline

– Map-Reduce

– Single-purpose aggregation operations



  

MongoDB Aggregation pipeline ex

https://docs.mongodb.com/manual/aggregation/ 



  

MongoDB Aggregation pipeline

● Provide a sequence of stages of processing
– Each stage uses one command below, modifies or 

filters the selected documents, results fed into next

– Like a pipeline in a unix shell
Operator Operation

$project Select a subset of fields from documents

$match Discard documents not matching provided criteria

$group Aggregate documents based on keys with various summaries

$sort Order the results

$skip Omit the documents from the beginning of the results

$limit Limit results to only this number

$unwind Enter arrays and process nested documents

https://www.tutorialspoint.com/mongodb/mongodb_aggregation.htm



  

MongoDB Map-Reduce ex

https://docs.mongodb.com/manual/aggregation/#map-reduce 



  

MongoDB Single-purpose 
aggregation functions

● Less flexible

● But easier to use

● Two functions:
– db.collection.count()

– db.collection.distinct()

https://docs.mongodb.com/manual/aggregation/#single-purpose-aggregation-operations 



  

Example JSON database

● Relational schema



  

Example JSON database

● Relational schema

● Example JSON 
database

● Uses typical 
“Document 
embedding”

● Mirrors OO 
design



  

Example JSON database
Document linking

● Could instead use 
document linking 
to list of actor 
documents



  

Example JSON database
Document linking

● Could instead use 
document linking 
to list of actor 
documents

● Or could use relational-
style document linking, 
closer to 3rd normal form

● Less natural for document 
DB because of lack of joins



  

Example document DB: MongoDB
Query with JavaScript



  

Example document DB: MongoDB
Query with JavaScript



  

Example document DB: MongoDB
Query with JavaScript



  

Document database summary

● Like a key-value store, but with self-documenting 
values

● Like a traditional RDBMS, but more scalable, less 
mis-match with object-oriented programming

● Many types of databases are adding support for 
JSON, so a “JSON document database” might soon 
be a feature of other databases instead of a 
distinct type of database



  

Document databases
Strengths and weaknesses

● Strengths
– Self-documenting schema

– Easier for non-programmers to query

– Can offer availability instead of strict consistency

● Weaknesses
– Typically weak transactional support

– Joins implemented in application code



  

Column databases



  

Column databases

● RDBMs is tuned for OLTP: OnLine Transaction 
Processing
– Data in relations are organized by row (tuple)

– All data in a row are stored together

● Data warehouses used for analytics present a different 
workload: OLAP: OnLine Analytic Processing
– Aggregate information over many records to provide insight 

into trends

– Organizing relations by column has several advantages



  

Data warehousing

● In the 1970s, OLTP happened in real time, reports 
were generated in batches overnight

● In the 1980s and 90s, RDBMs started to be used 
for generating reports in real-time in parallel to 
the OLTP systems
– Known as data warehouses

– Star schema de-normalizes data somewhat to provide 
real-time responses



  

Star Schema 
For RDBMS data warehouse

● Large central “fact” table
– Measurements or metrics 

of each event

● Smaller “dimension” 
tables
– Attributes to describe 

facts

● Still CPU and I/O 
intensive to use



  

Instead: Column Databases
Store relations by column



  

Column database advantages

● Two main advantages

● Acceleration of 
aggregation queries
– Because data are stored 

together

● Better data 
compression
– Because similar data 

are stored together



  

Column database disadvantages

● Slower to insert
– RDBMS requires one 

IO to insert a row

– Column database could 
require one per column

● Inserts are generally 
batched across a 
number of rows



  

C-store is a column store 
with a row-based cache

● Column store is 
bulk-loaded 
periodically

● Delta-store is 
updated in real-time

● Queries combine 
results from both

● Company Vertica 
commercialized it



  

Data are stored as “Projections”

● Columns that are accessed 
together can be stored 
together

● Workload-dependent
– Can be created manually

– Or on the fly by the query 
optimizer

– Or in bulk based on 
historical workloads

● Like indexes in RDBMS



  

Column store summary

● Designed for data warehousing and analytics

● Re-organize data for compression and aggregation

● Can be “added on” as feature to other DB systems

● Significant component in some in-memory DBs
– For analytics applications (SAP HANA)

● For multimedia, store metadata in column store, 
media in key-value store



  

Column store
Strengths and weaknesses

● Strengths
– Fast aggregations

– Efficient compression

● Weaknesses
– Vanilla model expensive to insert one row



  

Summary

● NoSQL architectures utilize different tradeoffs for 
different workloads

● Document databases for better fit with object-
oriented code

● Graph databases for modeling relationships 
between things

● Column stores for efficient analytics
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