

CISC 7610 Lecture 4
Approaches to multimedia databases

Topics:
Graph databases

Neo4j syntax and examples
Document databases

MongoDB syntax and examples
Column databases

NoSQL architectures: different
tradeoffs for different workloads

● Already seen: Generation 1
– Hadoop for batch processing on commodity hardware

– Key-value stores for distributed non-transactional processing

● This lecture: Generation 2
– Document databases for better fit with object-oriented code

● This lecture also: Generation 3
– Graph databases for modeling relationships between things

– Column stores for efficient analytics

Graph databases

Graph databases

● Most databases store information about things: key-value stores,
document databases, RDBMS

● Graph databases put the relationships between things on equal footing
with the things themselves

● Examples: social networks, medical models, energy networks, access-control
systems, etc.

● Can be modeling in RDBMSs using foreign keys and self-joins
– Generally hits performance issues when working with very large graphs

– SQL lacks an expressive syntax to work with graph data

● Key-value stores and document databases lack joins, would treat a graph as
one document

● For multimedia, store metadata in graph, data in key-value store

Example graph

● Graphs have

● Vertices (AKA
“nodes”)

● Edges (AKA
“relationships”)

● Both can have
“properties”

Example graph

Relational schema
for movie data

Converting relational to graph-based

● Each row in a entity table becomes a node

● Each entity table becomes a label on nodes

● Columns on those tables become node properties

● Foreign keys become relationships to the
corresponding nodes in the other table

● Join tables become relationships, columns on those
tables become relationship properties

Relational vs graph schema

Relational Graph-based

Relational vs graph schema

Relational Graph-based

Graph databases
Issues with graphs in relational model
● SQL lacks the syntax to easily perform graph

traversal
– Especially traversals where the depth is unknown or

unbounded

– E.g., Kevin Bacon game, Erdos number

● Performance degrades quickly as we traverse the
graph
– Each level of traversal adds significantly to query

response time.

Example graph

● SQL query to find
actors who co-starred
with Keanu Reeves

Relational schema
for movie data

Example graph

● SQL query to find
actors who co-starred
with Keanu Reeves

Relational schema
for movie data

Issues with other database models
for graph data

● Finding co-stars requires 5-way join
– Add another 3 joins for each level deeper of query

● No syntax to allow arbitrary or unknown depth

● No syntax to expand the whole graph (unknown depth)

● Even with indexing, each join requires an index lookup for
each actor and movie

● Fast, but memory-inefficient solution: Load the tables in their
entirety into map structures in memory

● For key-value stores and document databases, graph must be
traversed in application code

Neo4j syntax and examples

Example graph database: Neo4j

● Property graph model, nodes and edges both have properties

● Neo4j is the most popular graph database

● Written in Java

● Easily embedded in any Java application or run as a
standalone server

● Supports billions of (graph) nodes, ACID compliant
transactions, and multiversion consistency.

● Implements declarative graph query language Cypher
– Query graphs in a way somewhat similar to SQL

Neo4j was used to quickly analyze the
Panama Papers leak

Neo4j uses Cypher
graph query language

● Declarative query language (like SQL)

● ASCII-Art notation for nodes and edges

● Results are graphs as well
– But can be displayed as tables

Cypher syntax: nodes/entities

● Nodes appear in
parentheses: (a), (b)

– a and b are variables that
can be referred to later in the
query

– Can access variables’
properties, e.g. a.name

– Can request nodes with a
specific label using colon:

a:Person

– Other properties can be
specified in braces:

(a:Person {name:”Mike”})

https://neo4j.com/developer/cypher-query-language/

Cypher syntax: edges/relationships

● Arrows for
relationships -->

– With variables and
properties in square
brackets:
-[r:LIKES]->

– Can include path
length:

-[r:LIKES*..4]->

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation: CREATE

● Create a Person with name property of “You”:

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation: CREATE

● Create a Person with name property of “You”:

CREATE (you:Person {name:"You"})

RETURN you

https://neo4j.com/developer/cypher-query-language/

Cypher graph querying: MATCH

● Query using MATCH

– These are all equivalent for the one-node graph we just
created

MATCH (n) RETURN n;

MATCH (n:Person) RETURN n;

MATCH (n:Person {name: “You”}) RETURN n;

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation:

MATCH and CREATE
● Add a new relationship between the existing node

and a new node (you like neo, which is a Database
with name property “Neo4j”)

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation:

MATCH and CREATE
● Add a new relationship between the existing node

and a new node (you like neo, which is a Database
with name property “Neo4j”)

MATCH (you:Person {name:"You"})

CREATE (you)-[like:LIKE]->(neo:Database

{name:"Neo4j" })

RETURN you,like,neo

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation:

FOREACH to loop over things
● Add a new relationship between the existing node

and several new nodes (create new friends Johan,
Rajesh, Anna, Julia, and Andrew)

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation:

FOREACH to loop over things
● Add a new relationship between the existing node

and several new nodes (create new friends Johan,
Rajesh, Anna, Julia, and Andrew)

MATCH (you:Person {name:"You"})

FOREACH (name in

["Johan","Rajesh","Anna","Julia","Andrew"] |

 CREATE (you)-[:FRIEND]->(:Person {name:name}))

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation

● Create new relationship between two existing
entities (Anna has worked_with Neo4j)

https://neo4j.com/developer/cypher-query-language/

Cypher graph creation

● Create new relationship between two existing entities (Anna has
worked_with Neo4j)

MATCH (neo:Database {name:"Neo4j"})

MATCH (anna:Person {name:"Anna"})

CREATE (anna)-[:FRIEND]->(:Person:Expert

{name:"Amanda"})-[:WORKED_WITH]->(neo)

https://neo4j.com/developer/cypher-query-language/

Cypher graph querying

● Find shortest friend-of-a-friend path to someone
in your network who can help you learn Neo4j

https://neo4j.com/developer/cypher-query-language/

Cypher graph querying

● Find shortest friend-of-a-friend path to someone
in your network who can help you learn Neo4j
MATCH (you {name:"You"})

MATCH (expert)-[:WORKED_WITH]->(db:Database

{name:"Neo4j"})

MATCH path = shortestPath((you)-[:FRIEND*..5]-

(expert))

RETURN db,expert,path

https://neo4j.com/developer/cypher-query-language/

Example graph database: Neo4j
Create example graph

CREATE (TheMatrix:Movie {title:'The Matrix',

released:1999, tagline:'Welcome to the Real World'})

CREATE (JohnWick:Movie {title:'John Wick', released:2014,

tagline:'Silliest Keanu movie ever'})

CREATE (Keanu:Person {name:'Keanu Reeves', born:1964})

CREATE (AndyW:Person {name:'Andy Wachowski', born:1967})

CREATE

(Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrix),

(Keanu)-[:ACTED_IN {roles:['John Wick']}]->(JohnWick),

(AndyW)-[:DIRECTED]->(TheMatrix)

Example graph database: Neo4j
Retrieve info on one node

MATCH (keanu:Person {name:"Keanu Reeves"})

RETURN keanu;

+--+

| keanu |

+--+

| Node[1]{name:"Keanu Reeves",born:1964} |

+--+

Bigger graph database in Neo4j
Find all co-stars of Keanu

MATCH (kenau:Person {name:"Keanu Reeves"})-

[:ACTED_IN]→(movie)<-[:ACTED_IN]-(coStar) RETURN

coStar.name;

+----------------------+

| coStar.name |

+----------------------+

| "Jack Nicholson" |

| "Diane Keaton" |

| "Dina Meyer" |

| "Ice-T" |

| "Takeshi Kitano" |

Bigger graph database in Neo4j
Find all nodes within 2 hops of Keanu
MATCH (kenau:Person {name:"Keanu Reeves"})-[*1..2]-

(related) RETURN distinct related;

+--|

| related |

+--|

| Node[0]{title:"The Matrix",released:1999, tagline:…} |

| Node[7]{name:"Joel Silver",born:1952} |

| Node[5]{name:"Andy Wachowski",born:1967} |

| Node[6]{name:"Lana Wachowski",born:1965} |

| … |

Bigger graph database in Neo4j
Results are graphs too

Bigger graph database in Neo4j
Demo

Graph database internals:
Index-free adjacency

● Graph processing can be performed on databases irrespective of their internal
storage format
– It is a logical model, not a specific implementation

● Efficient real-time graph processing requires moving through graph without index
lookups
– Referred to as index-free adjacency

● In RDBMS, indexes allow logical key values to be translated to a physical addresses
– Typically, three or four logical IO operations are required to traverse a B-Tree index

– Plus another lookup to retrieve the value

– Can be cached, but usually some disk IO required

● In a native graph database utilizing index-free adjacency, each node knows the
physical location of all adjacent nodes
– So no need to use indexes to efficiently navigate the graph

Graph compute engines:
Add graph interface on other models

● Implements efficient graph processing algorithms

● Exposes graph APIs

● Doesn’t necessarily store data in index free adjacency graph
– Usually designed for batch processing of most or all of a graph

● Significant examples:
– Apache Giraph: graph processing on Hadoop using MapReduce

– GraphX: graph processing part in Spark (part of Berkeley Data
Analytic Stack)

– Titan: graph processing on Big Data storage engines like Hbase
and Cassandra

Graph databases
Strengths and weaknesses

● Strengths
– Joins are precomputed

– Flexible schema

– Fast and scalable

● Weaknesses
– Harder to execute queries not embodied in

relationships

Document databases

Document databases

● Non-relational database that stores data as structured
documents
– Usually XML or JSON formats

● Doesn’t imply anything specific beyond the document
storage model

● Could implement ACID transactions, etc
– Most provide modest transactional support

● Try to remove object-relational impedance mismatch

● Easy to incorporate media in documents

JSON-based document databases
flourished starting in 2008

● Address the conflict between object-oriented
programming and the relational database model

● Self-describing document formats could be
interrogated independently of the program that
had created them

● Aligned well with the dominant web-based
programming paradigms

JSON databases

● Not a single specification, just store data in JSON format, but usually

● Basic unit of storage is the Document ⋲ a row in an RDBMS
– One or more key-value pairs

– May also contain nested documents and arrays

– Arrays may also contain documents, creating complex hierarchical structure

● A collection or bucket is a set of documents sharing some common purpose
– ⋲ a relational table

– Documents in a collection don’t have to be the same type

● Could implement 3rd normal form schema
– But usually model data in a smaller number of collections

– With nested documents representing master-detail relationships

JSON format

Example JSON structure
(from homework)

{

 "url": "https:\/\/farm5.staticflickr.com\/4469\/23531804118_fce6162cd1.jpg",

 "response": {

 "labelAnnotations": [

 {

 "score": 0.85065764188766,

 "mid": "\/m\/07yv9",

 "description": "vehicle"

 },

 ...

],

 "webDetection": {

 "fullMatchingImages": [

 {

 "url": "https:\/\/farm6.staticflickr.com\/5079\/7403056606_a09f6f670e_b.jpg"

 },

 ...

],

 "pagesWithMatchingImages": [

 {

 "url": "http:\/\/picssr.com\/photos\/32622429@N02\/favorites\/page109?nsid=32622429@N02"

 },

 ...

],

 "webEntities": [

 {

 "score": 3.0824000835419,

 "entityId": "\/m\/02vqfm",

 "description": "Coffee"

 },

 ...

],

 "partialMatchingImages": [

 {

 "url": "https:\/\/farm6.staticflickr.com\/5079\/7403056606_a09f6f670e_b.jpg"

 },

 ...

]

 },

MongoDB syntax and examples

MongoDB Create operations

● Several commands: insertOne(), insertMany(), and
 save()

● save() will update an existing document if found
or insert a new one if not

https://docs.mongodb.com/manual/crud/#crud

MongoDB Search operations

● Select documents matching certain criteria

● Project to only the fields of interest

● Cursor modifiers include count(), limit(), skip(),
sort()

https://docs.mongodb.com/manual/crud/#crud

MongoDB Aggregation

● Aggregation allows you to perform more complex
queries

● Three interfaces
– Aggregation Pipeline

– Map-Reduce

– Single-purpose aggregation operations

MongoDB Aggregation pipeline ex

https://docs.mongodb.com/manual/aggregation/

MongoDB Aggregation pipeline

● Provide a sequence of stages of processing
– Each stage uses one command below, modifies or

filters the selected documents, results fed into next

– Like a pipeline in a unix shell
Operator Operation

$project Select a subset of fields from documents

$match Discard documents not matching provided criteria

$group Aggregate documents based on keys with various summaries

$sort Order the results

$skip Omit the documents from the beginning of the results

$limit Limit results to only this number

$unwind Enter arrays and process nested documents

https://www.tutorialspoint.com/mongodb/mongodb_aggregation.htm

MongoDB Map-Reduce ex

https://docs.mongodb.com/manual/aggregation/#map-reduce

MongoDB Single-purpose
aggregation functions

● Less flexible

● But easier to use

● Two functions:
– db.collection.count()

– db.collection.distinct()

https://docs.mongodb.com/manual/aggregation/#single-purpose-aggregation-operations

Example JSON database

● Relational schema

Example JSON database

● Relational schema

● Example JSON
database

● Uses typical
“Document
embedding”

● Mirrors OO
design

Example JSON database
Document linking

● Could instead use
document linking
to list of actor
documents

Example JSON database
Document linking

● Could instead use
document linking
to list of actor
documents

● Or could use relational-
style document linking,
closer to 3rd normal form

● Less natural for document
DB because of lack of joins

Example document DB: MongoDB
Query with JavaScript

Example document DB: MongoDB
Query with JavaScript

Example document DB: MongoDB
Query with JavaScript

Document database summary

● Like a key-value store, but with self-documenting
values

● Like a traditional RDBMS, but more scalable, less
mis-match with object-oriented programming

● Many types of databases are adding support for
JSON, so a “JSON document database” might soon
be a feature of other databases instead of a
distinct type of database

Document databases
Strengths and weaknesses

● Strengths
– Self-documenting schema

– Easier for non-programmers to query

– Can offer availability instead of strict consistency

● Weaknesses
– Typically weak transactional support

– Joins implemented in application code

Column databases

Column databases

● RDBMs is tuned for OLTP: OnLine Transaction
Processing
– Data in relations are organized by row (tuple)

– All data in a row are stored together

● Data warehouses used for analytics present a different
workload: OLAP: OnLine Analytic Processing
– Aggregate information over many records to provide insight

into trends

– Organizing relations by column has several advantages

Data warehousing

● In the 1970s, OLTP happened in real time, reports
were generated in batches overnight

● In the 1980s and 90s, RDBMs started to be used
for generating reports in real-time in parallel to
the OLTP systems
– Known as data warehouses

– Star schema de-normalizes data somewhat to provide
real-time responses

Star Schema
For RDBMS data warehouse

● Large central “fact” table
– Measurements or metrics

of each event

● Smaller “dimension”
tables
– Attributes to describe

facts

● Still CPU and I/O
intensive to use

Instead: Column Databases
Store relations by column

Column database advantages

● Two main advantages

● Acceleration of
aggregation queries
– Because data are stored

together

● Better data
compression
– Because similar data

are stored together

Column database disadvantages

● Slower to insert
– RDBMS requires one

IO to insert a row

– Column database could
require one per column

● Inserts are generally
batched across a
number of rows

C-store is a column store
with a row-based cache

● Column store is
bulk-loaded
periodically

● Delta-store is
updated in real-time

● Queries combine
results from both

● Company Vertica
commercialized it

Data are stored as “Projections”

● Columns that are accessed
together can be stored
together

● Workload-dependent
– Can be created manually

– Or on the fly by the query
optimizer

– Or in bulk based on
historical workloads

● Like indexes in RDBMS

Column store summary

● Designed for data warehousing and analytics

● Re-organize data for compression and aggregation

● Can be “added on” as feature to other DB systems

● Significant component in some in-memory DBs
– For analytics applications (SAP HANA)

● For multimedia, store metadata in column store,
media in key-value store

Column store
Strengths and weaknesses

● Strengths
– Fast aggregations

– Efficient compression

● Weaknesses
– Vanilla model expensive to insert one row

Summary

● NoSQL architectures utilize different tradeoffs for
different workloads

● Document databases for better fit with object-
oriented code

● Graph databases for modeling relationships
between things

● Column stores for efficient analytics

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

