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Abstract—This paper introduces a new approach to dictionary-
based source separation employing a learned non-linear metric.
In contrast to existing parametric source separation systems, this
model is able to utilize a rich dictionary of speech signals. In
contrast to previous dictionary-based source separation systems,
the system can utilize perceptually relevant non-linear features
of the noisy and clean audio. This approach utilizes a deep
neural network (DNN) to predict whether a noisy chunk of audio
contains a given clean chunk. Speaker-dependent experiments
on the small-vocabulary CHiME2-GRID corpus show that this
model is able to accurately resynthesize clean speech from noisy
observations. Preliminary listening tests show that the system’s
output has much higher audio quality than existing parametric
systems trained on the same data, achieving noise suppression
levels close to those of the original clean speech.

Index Terms—Speech; noise suppression; concatenative synthe-
sis; corpus-based; nonparametric

I. INTRODUCTION

Acoustic noise is very disruptive to voice communication.
Even mild levels of noise reduce the intelligibility of speech for
the hearing impaired and for hearing aid users [1]. They also
increase cognitive load [2] in both normal hearing and hearing
impaired listeners. Current noise suppression technologies
typically attempt to modify the noisy signal to make it sound
more like the original clean signal. We propose here instead
replacing the noisy signal with a signal created by concatenative
synthesis [3]. Such an approach can almost entirely eliminate
the noise while maintaining the high speech quality that
concatenative synthesizers have shown. Such a system could
be fielded in a mobile phone that records its owner’s voice in
a quiet environment and then resynthesizes new speech from
those recordings, even in noisy environments.

To perform this concatenative synthesis, we propose learning
a non-linear similarity function between pairs of “chunks”
of noisy and clean speech such that pairs involving the
same speech are given high similarity while pairs involving
different speech are not. At test time, this function will be
used in conjunction with a corpus of clean speech “units” to
resynthesize the clean speech. In particular, clean dictionary
elements will be selected to replace noisy observations such
that they are similar under our learned function and such that
adjacent dictionary elements are compatible with one another.

There are existing noise suppression algorithms based on

non-negative matrix factorization [4] and sparse coding [5] that
model noisy speech as a linear sum of speech and noise bases.
These models are typically applied in the Fourier magnitude and
power spectrum domains, where additivity only approximately
holds. Such models cannot be applied to perceptually motivated
features like the log mel spectrum [6], because additivity does
not hold there. Such domains require a learned, non-linear
metric, such as the one presented here.

II. RELATED WORK

Several methods have been proposed recently for corpus-
based speech enhancement [7–11]. Work in one research thread
[7–9] builds dictionaries of noisy speech, adding noise to known
clean speech. While this makes comparing the observation to
the dictionary simple, it requires a very large dictionary and
access to the noise at training time. A second research thread
[10, 11] builds dictionaries out of noise-suppressed speech.
It performs standard noise suppression on synthetic mixtures
at training time and on the observation at test time, and then
performs matching in this noise suppressed domain. While more
robust and generalizable than the noise-dependent approach,
this method is still sensitive to the performance of the noise
suppressor. Such an approach could be applied in tandem with
our proposed approach.

There are several non-linear metric learning algorithms [12–
14] and several learning to rank algorithms [15–18] that have
been applied to other problems but are relevant to this one
as well. The closest are perhaps [19, 20], which learn neural
networks to map examples into a space in which pairs of
examples from the same class are close to each other and pairs
from different classes are far apart. Our system differs from
those in that we process the dictionary elements and noisy
observations through a single combined network, allowing it
to learn different transformations for each signal type and
interactions between them. By predicting a similarity score
instead of a ranking, we can also combine our predictions with
transition scores to improve temporal continuity.

III. NON-LINEAR DICTIONARY-BASED DENOISING

Figure 1 shows an illustration of the use of a learned non-
linear metric for audio denoising. It shows that an incoming
noisy audio stream is decomposed into temporally-overlapping



Fig. 1. Overview of denoising system. Each “chunk” of the observed mixture
signal is paired with each “chunk” of clean speech in the dictionary and input
to a deep neural network (DNN), providing a similarity score. The noisy chunk
can be replaced by the dictionary element with the highest similarity score.

chunks. Each chunk is then compared with every element in the
dictionary using a learned similarity function, to create a matrix
of similarity values. The best path through this matrix is then
found, incorporating a transition affinity between dictionary
elements and the audio corresponding to the dictionary elements
on the best path is assembled into the output. Because the
dictionary only consists of clean speech, the resynthesis
contains no noise aside from incorrect or misplaced dictionary
elements. Mathematically, the best path is

ẑ = argmax
z

∏
t

p(zt = j |xt)p(zt = j | zt−1 = i) (1)

= argmax
z

∏
i

g(zj , xi)Tij (2)

where, g(zj , xi) is the similarity function between clean chunk
zj and noisy chunk xi defined in Section III-A and Tij is the
transition matrix defined in Section III-B.

Once the best path through the dictionary is found, the
clean speech is resynthesized using an overlap-add technique.
Specifically, the audio corresponding to each selected dictionary
chunk is extracted and added to an output buffer with a linear
fade-in and fade-out of 16 ms. The overlap between query
chunks can be anything up to the length of a chunk, but we
have found that an overlap of half of a chunk provides a good
compromise between continuity and computational cost.

A. Learning the similarity function

We thus endeavor to learn a non-linear similarity function,
g(z, x) between clean speech chunks, {zj}Jj=1, and chunks
of noisy speech, {xi}Ii=1. In the time domain, these chunks
comprise a few hundred milliseconds of audio. Input audio for
both models is first transformed into the perceptually motivated

Fig. 2. Two pairs of clean and noisy chunks illustrating the collection of
training data for the paired-input DNN. In the positive pair, the clean speech
chunk is present in the noisy mixture chunk; in the negative pair it is not.

(a) (b) (c)

Fig. 3. Structure of the DNNs used in the experiments. Predicting (a) similarity
from a (clean, noisy) pair of chunks, (b) clean chunk from noisy chunk, (c)
ideal ratio mask from noisy chunk.

log mel spectrum [6]. We assume that each noisy chunk is made
up of a sum of at least one dictionary chunk and extraneous
noise from outside the dictionary. Thus we define yij , the
desired output of our similarity function, to be 1 when xi
contains zj and 0 otherwise. See Figure 2 for an illustration
of how this ground truth target data is derived from speech
mixed with noise.

In this work, we use a deep neural network (DNN) as g(z, x).
The structure of the DNN is shown in Figure 3(a). It takes as
input 11 frames of the log mel spectrograms of a clean and
noisy chunk, rasterized and concatenated together, making a
total of 484 dimensions. It has 4 hidden layers of 1024 rectified
linear units (ReLU) [21] each, and a single sigmoid output unit
predicting yij . It is initialized with random weights and trained
using backpropagation with dropout of 20% of the hidden units
[22] and ADA-Grad stochastic gradient descent [23]. Training
minimizes the cross-entropy between yij and g(zj , xi)∑

i,j

−yij log g(zj , xi)− (1− yij) log(1− g(zj , xi)). (3)

This ground truth is perhaps more restrictive than it needs to
be. Future work will explore the inclusion of inexact matches
based on various characterizations of the dictionary elements.

B. Transition affinities

We also compute, T (zi, zj), the affinity of transitioning from
dictionary element zi to dictionary element zj . For now, this
computation is deterministic and not learned. We construct a
matrix Tij of all possible such transitions by comparing the
log mel spectrum of the end of zi to that of the beginning of
zj . In particular

Tij = exp (−dτ (zi, zj)/γ) (4)



where dτ (zi, zj) is the Euclidean distance between the log mel
spectra of the last τ frames of zi and the first τ frames of zj
and γ is a parameter that controls the mapping of distances
to affinities. Because our dictionaries contain approximately
60,000 elements, computing the whole transition matrix is
feasible, but storing it is not. We thus store only the largest
10,000,000 (0.28% of) entries and set all others to be equal to
the smallest stored entry. Although we do not take advantage of
the fact here, computation of these affinities could be performed
on different features than are used by the DNN.

IV. EXPERIMENTS

We use the data from the CHiME2-GRID small vocabulary
dataset [24]. The Second Computational Hearing in Multisource
Environments challenge (CHiME2) simulates read speech in a
living room environment with recorded household noises at six
different signal to noise ratios (SNRs) from −6 dB to 9 dB. It
utilizes sentences from the GRID corpus [25], which consist of
six short words of the form, “〈command〉 〈color〉 〈preposition〉
〈letter〉 〈digit〉 〈adverb〉”, for example, “place blue at A 9
again.” In assembling the data, the authors selected noises that
could achieve each SNR with only minor adjustments in gain,
creating more realistic mixtures. The noises are mainly the
speech of women and children, music, and various household
activities. We use clean spatialized speech from the “reverberant”
condition and we use speech and noise mixtures from the
“isolated” condition, which are cropped to the duration of the
speech. Although all signals are provided in stereo, we average
the two channels together to perform monaural computations.

We use the official split of the mixtures into 500 training
utterances from each speaker at various SNRs and the same
24 development utterances (used for testing) at each of the six
SNRs. Each sentence is approximately two seconds long, for
a total of 16 minutes of training speech for each speaker. The
training and development sets contain both different utterances
and different noises.

From these utterances, which are sampled at 16 kHz, we
compute the log mel spectrogram in Matlab using [26], with
an FFT frame size of 32 ms and a hop size of 16 ms. We
found that chunks of 11 frames, corresponding to 192 ms total,
strike a good balance between generality and meaningfulness.
For training, we extract 11-frame chunks from the log mel
spectrogram that overlap by 10 frames with their neighbors.
This leads to a training dataset of 124,080 clean-noisy pairs
of chunks, half matching and half not matching. The testing
dictionary is constructed from all 500 training utterances, and
contains 67,040 clean chunks. Our experiments are speaker-
dependent, in that models are trained and tested on different
utterances from the same speaker. We selected speaker 3, a
male, because his speech had the longest duration.

A. Comparison systems

We compare our model with two mask-based source separa-
tion systems using similar neural networks trained on the
matching half of the training dataset. The first, shown in
Figure 3(b), predicts the log mel spectrum of the clean speech

TABLE I
RETRIEVAL METRICS FOR CORRECT DICTIONARY ELEMENT AVERAGED

OVER 500 NOISY QUERY CHUNKS SELECTED AT RANDOM FROM THE
CHIME2-GRID DEVEL SET. FOR AVERAGE RANK, LOWER IS BETTER.

Euclidean Paired NN

Number of dictionary chunks 2899 2899
Average rank of correct chunk 630 5
Precision-at-1 21.5% 72.3%

from that of the noisy speech, and the second, shown in
Figure 3(c) predicts the ideal ratio mask [27] from the noisy
speech. Both thus take 242 input dimensions and output 242
predictions. Both networks use four hidden layers of 1024
ReLU units each. The first uses linear output units to predict
the log mel spectrum of the clean speech with the mean squared
error criterion. Its estimates of the clean speech are then used
to construct a Wiener-like mask by subtracting the log mel
spectrum of the noisy mixture from it and converting to power
spectrum. The second network uses sigmoid output units with
the cross-entropy error criterion with the ideal ratio mask. Its
predictions (continuous values between 0 and 1) are then used
directly to mask the noisy mixture.

B. Ranking dictionary elements

We first evaluate the performance of our system by measuring
the retrieval performance of the dictionary element ranking
system. We do so here using a dictionary in which exactly one
element is the ground truth speech that was used to generate
the query chunk and the other dictionary elements were not.
We then run the network on inputs consisting of the pairing
of each dictionary chunk with the noisy query chunk and
measure the rank of this single correct answer in the list of all
network outputs. We also measure the proportion of the time
that the correct dictionary element is the top ranked in this
list. We compare the performance of the paired-input neural
network with a simple Euclidean distance. This experiment is
performed with 500 randomly selected noisy chunks as queries
and these metrics are averaged over all trials. The results of
this experiment can be seen in Table I. They show that the
paired neural network performs significantly better than the
Euclidean distance in retrieving the correct dictionary element
for each noisy query chunk. Not only does the correct chunk
rank very close to the top of the list on average, it is the top
element for 78.3% of the queries.

C. Denoising signals

In an actual application of the proposed system, there is
very little chance of the exact speech that went into a mixture
being present in the dictionary. Furthermore, there may be
several dictionary elements that are very close to one another,
any of which would make a good replacement for the noisy
speech. Thus, to evaluate the system more realistically, we
resynthesize the clean speech from a noisy utterance and
measure the subjective quality and intelligibility of the result.
For each clean utterance in the CHiME2-GRID development
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Fig. 4. Intelligibility subjective listening test results showing the average
percentage correctly identified of all words and just the keywords (letters and
numbers) for each system. Errors bars show 95% confidence intervals.
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Fig. 5. MUSHRA listening test results showing the average subjective speech
quality, noise suppression, and overall quality for each system. Higher numbers
are better in all cases. Errors bars show 95% confidence intervals.

set, we randomly selected a mixture at one SNR to process and
evaluate1. Processing a 2 second mixture using the proposed
system took approximately 8 CPU-minutes on an Intel Core
i5-2500 system.

The intelligibility test compared six different versions of
each mixture: the original clean speech (Clean), the unpro-
cessed mixture (Noisy), the concatenative resynthesis without
transition information (Concat No-trans), the concatenative
resynthesis with transition information (Concat), and the neural
networks described in Section IV-A trained to predict the ideal
ratio mask (IRM NN) and the clean speech (Clean est NN)
from the noisy speech. Three subjects evaluated these files,
two of whom were native English speakers. They listened to
all 24 mixtures processed by all 6 systems in different random
orders. Subjects were given a copy of the GRID grammar and
asked to transcribe the sentences as best they could, noting that
they did not necessarily have to adhere to the grammar. The
GRID task itself only measures the accuracy on the letter and
number in each sentence, so we report this number as well.

The results of the intelligibility test for each system averaged
over all files are shown in Figure 4, which plots both the
accuracy on all words and the accuracy on the letter and number
keywords. The same trends are evident in both accuracies:
intelligibility is already high for the noisy speech, there is no
processing that increases the intelligibility significantly, the

1These files can be heard at http://mr-pc.org/work/globalsip14/

concatenative synthesis has the worst intelligibility, but it is
significantly improved by the use of the transition matrix.

The speech quality test compared the same six systems
under a MUltiple Stimuli with Hidden Reference and Anchor
(MUSHRA) paradigm. For each mixture, listeners were pre-
sented with the reference clean and noisy speech, and then
with the same six systems as above unlabeled and in a random
order. The comparisons were presented in a different random
order for each listener. They were asked to rate each processed
mixture in terms of speech quality, noise suppression, and
overall quality each on a scale from 0 (poor) to 100 (excellent).
They were also instructed that an utterance could have high
quality while having low intelligibility if it sounded like natural
speech. Four listeners participated, two of whom had never
heard any of the processed mixtures before and two who had
heard some of them. Two finished all 24 comparisons, one
finished 19, and one finished 10.

The results of the speech quality test for each system are
shown in Figure 5, averaged across files and listeners. These
results show that the concatenative resynthesis system produces
speech with the highest quality in all three categories, with the
noise suppression quality approaching that of the original clean
speech. These differences are significant for all three categories.
We noticed a large discrepancy between these subjective results
and both the PEASS prediction of audio quality [28] and the
STOI prediction of intelligibility [29]. We believe that this is
because these metrics measure similarity to a single reference
and while our system produces natural and high quality speech,
it differs from this reference.

V. CONCLUSIONS

This paper has introduced a new paradigm for corpus-based
speech enhancement, namely the use of a learned non-linear
similarity function to make noise-robust predictions of the
dictionary elements that could explain a noisy speech utterance.
Because it is non-linear and learned, this function is able to
use arbitrary, perceptually motivated features as input. When
combined with a transition similarity function it becomes
essentially a concatenative resynthesis system. It outputs
speech that is significantly higher quality than competing
parametric systems trained on the same data, although of lower
intelligibility. In the future, numerous extensions to the system
are possible for performing nonparametric speech recognition,
pitch tracking, etc., by annotating the clean dictionary elements
before matching them to observations. The computational
demands of using significantly larger dictionaries, as would be
required for large vocabulary tasks, could be reduced using a
beam search in the Viterbi decoding or by using some form
of locality sensitive hashing to identify candidate dictionary
matches for each noisy chunk in constant time.
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