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Example: Noisy file

SNR: 2.5 dB
Café noise
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Example: Oracle mask system

SNR: 2.5 dB
Café noise
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Example: End to end speech denoise

SNR: 2.5 dB
Café noise

4



Example: Parametric resynthesis

SNR: 2.5 dB
Café noise
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Reference: Clean speech
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Motivation

• Standard speech enhancement → modify noisy recordings

– Introduce distortions in speech

• Resynthesize clean speech from noisy mixture

• Use speech synthesis for speech enhancement

– Vocoders to synthesize from acoustic features

– Easier task than synthesis!1

71. Maiti, S. and Mandel, M.I., 2019, May. “Speech denoising by parametric resynthesis”, ICASSP, 2019



Parametric Resynthesis (PR)

• Speech enhancement using vocoders

– Predict acoustic features from noisy speech

– Synthesize speech from acoustic features

• High quality speech generation → neural vocoders2

Neural vocoders work on unseen speakers?
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2. Maiti, S. and Mandel, M.I., 2019, October. “Parametric resynthesis with neural vocoders”, WASPAA 2019



Neural Vocoders

• Models speech in time domain directly

WaveNet3 WaveGlow4 LPCNet5

• Autoregressive
• High Quality
• Slower synthesis

• Generates samples in parallel
• Glow based model
• Fast synthesis

• Autoregressive
• Faster synthesis → written in C
• Hybrid model

o Models vocal response with LPC coefficients
o Predicts excitation → simpler task
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3. Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." , SSW, 2016.
4. Prenger, R, Rafael V, and Bryan C. "Waveglow: A flow-based generative network for speech synthesis.“, ICASSP 2019
5. Valin, J. M., & Skoglund, J.  “LPCNet: Improving neural speech synthesis through linear prediction. ”, ICASSP 2019

WaveNet:  we use GPU accelerated nv-WaveNet – for faster synthesis



Train neural vocoders with large number of speakers

• Train6: 56 speakers

– Voices from VCTK dataset

– 28 male / 28 female

– Accent: US and Scotland

• Test6: 6 unseen speakers

– 3 male / 3 female

– Accent: England

• Sampling rate 16 kHZ

• Objective quality metrics

– CSIG, CBAK, COVL7

– 0-5 → higher is better
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6. Valentini-Botinhao, C., 2017. Noisy speech database for training speech enhancement algorithms and TTS models.
7. Loizou, P.C., 2013. Speech enhancement: theory and practice. CRC press.



Speaker independence of neural vocoders

Scores averaged over 10 files/speaker

nv-Wavenet → low generation quality

Neural vocoders generalizes to unseen 
speakers
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CSIG CBAK COVL

1 Seen speaker

WaveGlow 4.7 3.0 4.0

LPCNet 3.8 2.2 2.9

nv-WaveNet 3.3 2.1 2.5

6 Unseen speakers

WaveGlow 4.6 2.8 3.9

LPCNet 4.0 2.4 3.1

nv-WaveNet 3.2 2.1 2.5



Effect of gender on neural vocoders

Scores averaged over 10 files/speaker

WaveGlow models female speakers 
slightly better

LPCNet, WaveNet no such difference
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CSIG CBAK COVL

Male

WaveGlow 4.5 2.8 3.8

LPCNet 4.0 2.3 3.1

nv-WaveNet 3.2 2.1 2.5

Female

WaveGlow 4.6 2.8 3.9

LPCNet 4.0 2.4 3.2

nv-WaveNet 3.3 2.0 2.5



Parametric Resynthesis (PR)

1. Predict “clean” acoustic features from noisy speech

2. Reconstruct speech from acoustic features

▪ Acoustic features are different for different vocoders
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Vocoder acoustic features 

Neural vocoders →
WaveNet, WaveGlow, LPCNet

Vocoder Acoustic features Dim

WaveNet Mel-spectrogram 80 

WaveGlow Mel-spectrogram 80 

LPCNet BFCC, F0 period, F0 
correlation

20

WORLD Spectral envelope, 
aperiodicity, F0, v/uv

63
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Prediction model

• Predicts acoustic features (𝑋) at a fixed frame rate

– Input: noisy mel-spectrogram (𝑌)

– Loss: MSE ≔ 𝑋 − 𝑋′ 2

– 𝑋′→ predicted features

PR-WORLD

Spec Env + Δ+Δ2 AP+ Δ+Δ2 F0+ Δ+Δ2 V/UV

60 × 3 1 × 3 1 × 3 1Dim:
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Training of Parametric resynthesis

• Noisy trainset: 56 speaker set
– 8 noises from DEMAND
– 2 artificial noises
– SNR range: 15 – 0 dB

• Test: 2 unseen speakers
– 8 unseen noises from DEMAND
– 824 files
– 4 SNR level: 17.5 dB, 12.5 dB, 7.5 dB, 2.5 dB

• Comparison models: 
– SEGAN8, Wave-U-Net9, Wavenet-denoise10

– Oracle Wiener mask
o Has access to clean speech
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8. Pascual, S., Bonafonte, A. and Serra, J., “SEGAN: Speech enhancement generative adversarial network”. arXiv, 2017.

9. Macartney, C. and Weyde, T., “Improved speech enhancement with the wave-u-net”. arXiv, 2018.

10. Rethage, D., Pons, J. and Serra, X. “A wavenet for speech denoising”,ICASSP, 2018.



Objective metrics for speech enhancement

PR-WaveGlow performs best 
in CSIG and CBAK

CSIG CBAK COVL STOI

Oracle Wiener 4.3 3.8 3.8 0.98

PR-WaveGlow 3.8 2.4 3.1 0.91

PR-LPCNet (noisy F0) 3.5 2.1 2.7 0.88

PR-LPCNet 3.1 1.8 2.2 0.88

Wave-U-Net 3.5 3.2 3.0

SEGAN 3.5 2.9 2.8
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Subjective Quality

• MUSHRA listening test

• Number of files: 12

• SNR: 12.5 dB to 2.5 dB

PR-LPCNet outperforms all systems!
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Objective metrics on 12 listening test files

Subjective quality scores does not match objective scores

LPCNet scores 0.8 lower than WaveGlow!

CSIG CBAK COVL

OWM 4.3 3.8 3.9

PR-WaveGlow 3.8 2.4 3.0

PR-World 3.1 1.9 2.2

PR-LPCNet 3.0 1.8 2.2
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In a nutshell
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• Neural vocoders

– Speaker Independent when trained on large number of speakers

– All 3 vocoders were able to generalize to unseen speakers

• Speech enhancement

– PR-LPCNet

• Outperforms Oracle Wiener mask in subjective quality scores

– PR-WaveGlow

• Higher objective metrics than LPCNet



Thank You
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