Speaker independence of neural vocoders and their effect on parametric resynthesis speech enhancement

Soumi Maiti¹, Michael I Mandel^{1,2}

¹The Graduate Center, City University of New York

²Brooklyn College, City University of New York

ICASSP 2020

Example: Noisy file

Example: Oracle mask system

SNR: 2.5 dB Café noise

Example: End to end speech denoise

SNR: 2.5 dB Café noise

Example: Parametric resynthesis

SNR: 2.5 dB Café noise

Reference: Clean speech

Motivation

- Standard speech enhancement

 modify noisy recordings
 - Introduce distortions in speech
- Resynthesize clean speech from noisy mixture
- Use speech synthesis for speech enhancement
 - Vocoders to synthesize from acoustic features
 - Easier task than synthesis!¹

Parametric Resynthesis (PR)

- Speech enhancement using vocoders
 - Predict acoustic features from noisy speech
 - Synthesize speech from acoustic features

Neural vocoders work on unseen speakers?

Neural Vocoders

Models speech in time domain directly

WaveNet ³	WaveGlow ⁴	LPCNet ⁵
AutoregressiveHigh QualitySlower synthesis	Generates samples in parallelGlow based modelFast synthesis	 Autoregressive Faster synthesis → written in C Hybrid model Models vocal response with LPC coefficients Predicts excitation → simpler task

WaveNet: we use GPU accelerated nv-WaveNet – for faster synthesis

- 3. Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio.", SSW, 2016.
- 4. Prenger, R, Rafael V, and Bryan C. "Waveglow: A flow-based generative network for speech synthesis.", ICASSP 2019
- 5. Valin, J. M., & Skoglund, J. "LPCNet: Improving neural speech synthesis through linear prediction.", ICASSP 2019

Train neural vocoders with large number of speakers

- Train⁶: 56 speakers
 - Voices from VCTK dataset
 - 28 male / 28 female
 - Accent: US and Scotland
- **Test**⁶: **6** unseen speakers
 - 3 male / 3 female
 - Accent: England
- Sampling rate 16 kHZ
- Objective quality metrics
 - CSIG, CBAK, COVL⁷
 - $-0-5 \rightarrow \text{higher is better}$

Speaker independence of neural vocoders

Scores averaged over 10 files/speaker

nv-Wavenet → low generation quality

Neural vocoders generalizes to unseen

speakers

	CSIG	СВАК	COVL
1 Seen speaker			
WaveGlow	4.7	3.0	4.0
LPCNet	3.8	2.2	2.9
nv-WaveNet	3.3	2.1	2.5
6 Unseen speakers			
WaveGlow	4.6	2.8	3.9
LPCNet	4.0	2.4	3.1
nv-WaveNet	3.2	2.1	2.5

Effect of gender on neural vocoders

Scores averaged over 10 files/speaker

WaveGlow models female speakers slightly better

LPCNet, WaveNet no such difference

	CSIG	СВАК	COVL	
Male 🛉				
WaveGlow	4.5	2.8	3.8	
LPCNet	4.0	2.3	3.1	
nv-WaveNet	3.2	2.1	2.5	
Female 🛉				
WaveGlow	4.6	2.8	3.9	
LPCNet	4.0	2.4	3.2	
nv-WaveNet	3.3	2.0	2.5	

Parametric Resynthesis (PR)

- 1. Predict "clean" acoustic features from noisy speech
- 2. Reconstruct speech from acoustic features
 - Acoustic features are different for different vocoders

Resynthesize clean speech by predicting acoustic parameters

Vocoder acoustic features

Vocoder	Acoustic features	Dim
WaveNet	Mel-spectrogram	80
WaveGlow	Mel-spectrogram	80
LPCNet	BFCC, F0 period, F0 correlation	20
WORLD	Spectral envelope, aperiodicity, F0, v/uv	63

Neural vocoders →
WaveNet, WaveGlow, LPCNet

Prediction model

- Predicts acoustic features (X) at a fixed frame rate
 - Input: noisy mel-spectrogram (Y)
 - Loss: MSE $= |X X'|^2$
 - $-X' \rightarrow$ predicted features

V/UV

Training of Parametric resynthesis

- Noisy trainset: 56 speaker set
 - 8 noises from DEMAND
 - 2 artificial noises
 - SNR range: 15 − 0 dB
- **Test:** 2 unseen speakers
 - 8 unseen noises from DEMAND
 - 824 files
 - 4 SNR level: 17.5 dB, 12.5 dB, 7.5 dB, 2.5 dB
- Comparison models:
 - SEGAN⁸, Wave-U-Net⁹, Wavenet-denoise¹⁰
 - Oracle Wiener mask
 - Has access to clean speech

Objective metrics for speech enhancement

PR-WaveGlow performs best in CSIG and CBAK

	CSIG	СВАК	COVL	STOI
Oracle Wiener	4.3	3.8	3.8	0.98
PR-WaveGlow	3.8	2.4	3.1	0.91
PR-LPCNet (noisy F0)	3.5	2.1	2.7	0.88
PR-LPCNet	3.1	1.8	2.2	0.88
Wave-U-Net	3.5	3.2	3.0	
SEGAN	3.5	2.9	2.8	

Subjective Quality

MUSHRA listening test

Number of files: 12

SNR: 12.5 dB to 2.5 dB

PR-LPCNet outperforms all systems!

Objective metrics on 12 listening test files

	CSIG	СВАК	COVL
OWM	4.3	3.8	3.9
PR-WaveGlow	3.8	2.4	3.0
PR-World	3.1	1.9	2.2
PR-LPCNet	3.0	1.8	2.2

Subjective quality scores does not match objective scores LPCNet scores 0.8 lower than WaveGlow!

In a nutshell

- Neural vocoders
 - Speaker Independent when trained on large number of speakers
 - All 3 vocoders were able to generalize to unseen speakers
- Speech enhancement
 - PR-LPCNet
 - Outperforms Oracle Wiener mask in subjective quality scores
 - PR-WaveGlow
 - Higher objective metrics than LPCNet

Thank You