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Example: Oracle mask system
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Example: End to end speech denoise
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SNR: 2.5 dB
Café noise

Example: Parametric resynthesis
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Hz

Reference: Clean speech
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Motivation

» Standard speech enhancement =2 modify noisy recordings
— Introduce distortions in speech

* Resynthesize clean speech from noisy mixture
* Use speech synthesis for speech enhancement

— Vocoders to synthesize from acoustic features
— Easier task than synthesis!!

1. Maiti, S. and Mandel, M.1., 2019, May. “Speech denoising by parametric resynthesis”, ICASSP, 2019
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Parametric Resynthesis (PR)

* Speech enhancement using vocoders
— Predict acoustic features from noisy speech
— Synthesize speech from acoustic features

* High quality speech generation =2 neural vocoders?

Neural vocoders work on unseen speakers?

2. Maiti, S. and Mandel, M.I., 2019, October. “Parametric resynthesis with neural vocoders”, WASPAA 2019
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Neural Vocoders

Models speech in time domain directly

Autoregressive * Generates samples in parallel e Autoregressive
High Quality * Glow based model * Faster synthesis = written in C
Slower synthesis e Fast synthesis * Hybrid model

o Models vocal response with LPC coefficients
o Predicts excitation = simpler task

WaveNet: we use GPU accelerated nv-WaveNet — for faster synthesis

3. Oord, Aaron van den, et al. "Wavenet: A generative model for raw audio." , SSW, 2016.
4. Prenger, R, Rafael V, and Bryan C. "Waveglow: A flow-based generative network for speech synthesis.”, ICASSP 2019
5. Valin, J. M., & Skoglund, J. “LPCNet: Improving neural speech synthesis through linear prediction. ”, ICASSP 2019

GRADUATE

CITY UNIVERSITY

22 THE
2% CENTER

:



Train neural vocoders with large number of speakers

Train®: 56 speakers
— Voices from VCTK dataset
— 28 male / 28 female
— Accent: US and Scotland
Test®: 6 unseen speakers

— 3 male / 3 female

— Accent: England
Sampling rate 16 kHZ
Objective quality metrics

— CSIG, CBAK, COVL'’

— 0-5 = higher is better

6. Valentini-Botinhao, C., 2017. Noisy speech database for training speech enhancement algorithms and TTS models.
7. Loizou, P.C., 2013. Speech enhancement: theory and practice. CRC press.
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Speaker independence of neural vocoders

1 Seen speaker
Scores averaged over 10 files/speaker

_ . WaveGlow

nv-Wavenet = low generation quality
. LPCNet

Neural vocoders generalizes to unseen
speakers nv-WaveNet

6 Unseen speakers
WaveGlow
LPCNet

nv-WaveNet
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Effect of gender on neural vocoders

CSIG CBAK CoVL

Male i“\

Scores averaged over 10 files/speaker WaveGlow 4.5 2.8 3.8
WaveGlow models female speakers LPCNet 4.0 2.3 31
slightly better
. nv-WaveNet 3.2 2.1 2.5
LPCNet, WaveNet no such difference .
Female ﬁ\
WaveGlow 4.6 2.8 3.9
LPCNet 4.0 2.4 3.2

nv-WaveNet 3.3 2.0 2.5
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Parametric Resynthesis (PR)

1. Predict “clean” acoustic features from noisy speech

2. Reconstruct speech from acoustic features
= Acoustic features are different for different vocoders

Resynthesize clean speech by predicting acoustic
parameters

Prediction
"llh"' Model

Noisy Speech

VOCODER > ][l
Clean Speech

Acoustic
Parameters
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Vocoder acoustic features

Vocoder Acoustic features Dim
WaveNet Mel-spectrogram 80
WaveGlow Mel-spectrogram 80
LPCNet BFCC, FO period, FO 20
correlation
WORLD Spectral envelope, 63
aperiodicity, FO, v/uv

Neural vocoders =
WaveNet, WaveGlow, LPCNet
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* Predicts acoustic features (X) at a fixed frame rate

Prediction model

— Input: noisy mel-spectrogram (Y)
— Loss: MSE == |X — X'|?
— X' 2 predicted features

Noisy
Speech

Prediction

Model

Spec Env

FO

v/ UV

BAP

PR-WORLD

Spec Env + A+A?

Dim:

60 x 3

1x%x3

1x3
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Training of Parametric resynthesis

* Noisy trainset: 56 speaker set
— 8 noises from DEMAND
— 2 artificial noises
— SNRrange: 15-0dB

e Test: 2 unseen speakers
— 8 unseen noises from DEMAND
— 824 files
— 4SNRlevel: 17.5dB, 12.5dB, 7.5 dB, 2.5 dB

 Comparison models:
— SEGANS&, Wave-U-Net?, Wavenet-denoisel©
— Oracle Wiener mask
o Has access to clean speech

8. Pascual, S., Bonafonte, A. and Serra, J., “SEGAN: Speech enhancement generative adversarial network”. arXiv, 2017.
9. Macartney, C. and Weyde, T., “Improved speech enhancement with the wave-u-net”. arXiv, 2018.
10. Rethage, D., Pons, J. and Serra, X. “A wavenet for speech denoising”,ICASSP, 2018.
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Objective metrics for speech enhancement

PR-WaveGlow performs best
in CSIG and CBAK
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Subjective Quality
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Objective metrics on 12 listening test files

OWM 4.3 3.8 3.9

PR-WaveGlow 3.8 2.4 3.0
PR-World 3.1 1.9 2.2
PR-LPCNet 3.0 1.8 2.2

Subjective quality scores does not match objective scores
LPCNet scores 0.8 lower than WaveGlow!
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In a nutshell

* Neural vocoders
— Speaker Independent when trained on large number of speakers
— All 3 vocoders were able to generalize to unseen speakers

* Speech enhancement

— PR-LPCNet
* Outperforms Oracle Wiener mask in subjective quality scores

— PR-WaveGlow
* Higher objective metrics than LPCNet
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Thank You
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