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Summary

• 18-way artist identification task

•Compare all pairs of {artist-, song-level features} × {no SVM, SVM}

•Best performance with song-level features and SVM

•Compare 3 different features / distance measures

•KL divergence on single Gaussians placed 1st in audio artist ID and 2nd in
audio genre ID competitions at MIREX ’05 with 72.5% and 78.8% accura-
cies, respectively

Algorithm

•Calculate MFCCs for whole song

•Three different features / metrics

–Mean of MFCCs and covariance unwrapped and combined into single
vector, compared using Mahalanobis distance:

DM(u,v) = (u− v)TΣ−1(u− v) (1)

–ML Gaussian with mean and covariance of MFCCs, compared using KL
divergence:
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– 20-Gaussian mixture model of MFCCs, compare using KL divergence,
estimated with 500 Monte Carlo samples:
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•Divergences do not fulfill the Mercer conditions on kernels.

– Symmetrize:
DKL(p, q) = KL(p || q) +KL(q || p) (4)

–Turn distance measure into similarity (i.e. make positive semidefinite):

K(Xi, Xj) = e−γD(Xi,Xj) (5)

Dataset: uspop2002

•To avoid “album effect” each album either training, testing, or validation

• 18 artists (out of 400) had enough albums, 90 albums total

• 1210 songs: 656 training, 451 testing, 103 validation

•Also used 3-fold cross-validation, songs randomly assigned to a group, album
effect improves accuracy.

Experiments

Our solution: classification of song-level features with a DAG-SVM.

•Flexible features and distances, KL divergence between Gaussian song mod-
els performed best

•Once features extracted, fast retraining (10s-100s of example songs)

•Useful for relevance feedback, training many classifiers quickly
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Brand X: classification of artist-level features without an SVM.

•Gaussian mixture model trained on MFCC frames pooled by artist

• Slow feature extraction and training (10,000s of example frames)

•Too slow to do cross-validation experiments
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Two other classifiers:

• SVM, no song-level features: Train an 18-way DAG-SVM on many frames
from each artist. Classify test song by classifying frames and taking artist
with most votes.

•No SVM, song-level features: k-nearest neighbors classifier. Classify test
song based on labels of closest training songs using distance metrics men-
tioned above.

Results

Classification accuracy on separate training and testing albums.
Columns: Artist GMMs, artist SVMs, and kNN and SVMs using Maha-
lanobis distance, KL divergence between single Gaussians, and KL divergence
between 20-component GMMs

Art GMM Art SVM Maha 1G 20G
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SVM
non−SVM

Accuracy training and testing on separate albums (Sep) and within albums
(Same).

Classifier Song-Level? SVM? Sep Same

Artist GMM No No .541 —
Artist SVM No Yes .067 —
Song KNN Yes No .524 .722
Song SVM Yes Yes .687 .839

Accuracy for different song-level distance measures.

Classifier Distance Sep Same

KNN Mahalanobis .481 .594
KNN KL-Div 1G .524 .722
KNN KL-Div 20G .365 .515
SVM Mahalanobis .687 .792
SVM KL-Div 1G .648 .839
SVM KL-Div 20G .431 .365
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