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Abstract

Searching and organizing growing digital music collections requires

a computational model of music similarity. This paper describes a sys-

tem for performing flexible music similarity queries using SVM active

learning. We evaluate the success of our system by classifying 1200 pop

music songs according to moods and styles from an online music guide

and the performing artist. In comparing a number of feature repre-

sentations for songs, we found the statistics of mel-frequency cepstral

coefficients to perform best in precision-at-20 comparisons. We also

show that by choosing training examples intelligently, active learning

requires half as many labeled examples to achieve the same accuracy

as a standard scheme.

1 Introduction

With the sizes of personal digital music collections growing, choosing

music appropriate to a particular situation is getting increasingly dif-
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ficult. Furthermore, finding music one would like to listen to from

a personal collection or an online music store is also a difficult task.

Since finding songs that are similar to each other is time consuming

and each user has unique opinions, we would like to create a flexible,

open-ended approach to this task.

Our solution is to use relevance feedback, specifically Support Vec-

tor Machine (SVM) active learning, to learn a classifier for each query.

A search is both a mapping from low level audio features to higher level

concepts and a way for the user to clarify the search to him or her-

self. To begin a search, the user presents the system with one or more

examples of songs of interest, or “seed” songs. After this, the system

iterates between training a new classifier on labeled data and soliciting

new labels from the user for informative examples. The search pro-

ceeds quickly, and at every stage the system supplies its best estimate

of songs similar to the seed songs. Since it takes a significant amount of

time to listen to each song returned by a search, our system attempts

to minimize the number of songs that a user must label for a query.

On a dataset of 1210 songs pop songs using music categorizations

culled from Allmusic.com along with artist information as our ground

truth, we compared a number of acoustic features for retrieval precision

in the top 20 ranked results, finding the mean and covariance statistics

of MFCC vectors to give the best performance. We have also developed

an automatic tester for our SVM active learning system, showing that

an SVM active learner can achieve the same precision as a normal SVM

with less than half the number of training examples or, alternately,

can achieve a ten percentage point increase in precision with the same

number of labeled examples.
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1.1 Previous Work

1.2 Music Similarity

The idea of judging the similarity of music by a direct comparison be-

tween the waveform content was proposed by Foote in 1997 [11]. For

computational simplicity, his system used discrete distributions over

vector-quantizer symbols, and was evaluated over a database of a few

hundred 7-second excerpts. In 2001, Logan and Salomon were able

to compare continuous distributions over thousand of complete songs,

using the Earth Mover’s Distance to calculate dissimilarity between

mixtures of Gaussians [17]. There have followed a number of papers

refining the features, distance measures, and evaluation techniques in-

cluding our own work [3, 10, 4, 6]; Aucouturier and Pachet provide

an excellent review in [2], where they characterize these approaches as

“timbre similarity” to emphasize that they are based on distributions

of short-term features and ignore most temporal structure.

Particular tasks for music similarity are largely defined by the avail-

ability of ground truth. Tzanetakis and Cook popularized the use of

genre classification [25], whereas Whitman et al. proposed artist iden-

tification as a more interesting task, with the attraction of having

largely unambiguous ground-truth [26]. Here, we consider versions of

both these tasks.

Most work has sought to define a low-dimensional feature space

in which similarity is simply Euclidean distance, or measured by the

overlap of feature distributions. Here, we use a more complex classifier

(the SVM) on top of an implicit feature space of very high dimension;

the related RLSC classifier was used for music similarity in [27]. The

Fisher Kernel technique we tried was introduced for audio classification
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in [18].

1.2.1 Relevance Feedback

While the idea of relevance feedback had been around for a number

of years, Simon Tong first described using support vector machines for

active learning in [23]. In [24], Tong and Koller describe the version

space of all possible hyperplanes consistent with labelled data along

with methods for reducing it as quickly as possible to facilitate ac-

tive learning. He has applied SVM active learning to text and image

retrieval [23, 22].

Hoashi et al. [14, 13] use relevance feedback for music retrieval, but

their approach has a number of disadvantages when compared with

SVM active retrieval. Their system is based on Foote’s TreeQ vector

quantization[11], with which they must re-quantize the entire music

database for each query. Relevance feedback is incorporated into the

model by modifying the quantization weights of desired vectors. Our

approach uses the same feature vectors for every query and SVM active

learning, which has a strong theoretical justification, to incorporate

user feedback.

2 Algorithm

Our system’s success depends on the harmonious interaction between

two components. The feature vectors used to describe each song must

make explicit information from the original audio relevant to the clas-

sification task at hand. The classifier must then be able to take ad-

vantage of this information to successfully classify songs with as few

labeled training examples as possible.
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1. The user seeds the system with representative songs.

2. If this is the first feedback round, present the user with
randomly selected songs to label.
Else, present the user with the most informative songs
to label, i.e. those closest to the decision boundary.

3. Train an SVM on all labeled training instances.

4. Return to the user the most relevant songs, i.e. those
with the greatest positive distances from the decision
boundary.

5. Repeat steps 2 to 4 until the user is satisfied with the
results.

Figure 1: Summary of SVM active learning algorithm.

2.1 SVM Active Retrieval

SVM active learning combines the maximum margin classification of

SVMs with ideas from relevance feedback. See Figure 1 for a summary

of the active learning algorithm, which lends itself to both direct user

interaction and automated testing.

2.1.1 Support Vector Machines

The support vector machine (SVM) is a supervised classification sys-

tem that uses a hypothesis space of linear functions in a high dimen-

sional feature space in order to learn separating hyperplanes. As such,

SVM classification attempts to generalize an optimal decision bound-

ary between classes. Labeled training data in a given space is separated

by a maximum margin hyperplane through SVM classification.

The training data is projected into a higher dimensional feature

space via a Mercer kernel operator K(·) [22]. For nonlinearly sep-

5



arable data, the original feature space may be mapped to a higher-

dimensional, separable space by choosing a different kernel function.

In our implementation, we selected a Gaussian kernel:

K(u,v) = e−γ||u−v||2 , (1)

thus the space of possible classifier functions consists of placing weighted

Gaussians on key training instances[8]; the SVM training algorithm

chooses these instances (the “support vectors”) and weights to opti-

mize the margin between classifier boundary and training examples.

Because only a subset of the training samples end up being used

in the final classifier, an identical SVM would result from a training

set that omitted all the remaining examples. This makes SVMs an

attractive complement to relevance feedback: if the feedback system

can accurately identify the critical samples that will form the support

vectors, training time and labeling effort can, in the best case, be

reduced drastically with no impact on classifier accuracy.

2.1.2 Active Learning

In an active learning system, the user becomes an integral part of

the learning and classification process. As opposed to conventional

(“passive”) SVM classification where a classifier is trained on a large

pool of randomly selected labeled data, in an active learning system

the user is asked to label only those instances that would be most

informative to classification. Learning proceeds based on the feedback

of the user and relevant responses are determined by the individual

user’s preferences and interpretations.

The duality between points in feature space and hyperplanes in
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version space enables active learning with SVMs. Version space is

defined as the set of all hyperplanes consistent with the labeled data.

The user’s desired division of the feature space corresponds to a point

in version space that the SVM active learner would like to find as

quickly as possible. The hyperplanes of labeled instances divide version

space, restricting the range of consistent classifiers and homing in on

the desired classifier. The most efficient way to find this classifier is to

halve the version space with every labeled data point.

The simplest approximation to this goal is to select for labeling

those points in feature space closest to the SVM decision boundary.

Other methods exist for selecting points [24] but require expensive

searches or multiple retrainings of the classifier. Ideally, points would

be labeled individually, with the classifier retrained after each label-

ing, allowing an optimally efficient splitting of the version space. User

convenience, however, dictates that multiple points be selected for la-

beling at once, a situation that leads to suboptimal shrinking of the

version space, but reasonable performance.

The first round of active learning is treated as special. The user only

seeds our system with positive examples so the first group of examples

presented to the user for labeling cannot be chosen by a classifier.

These first examples are simply chosen at random, with the expectation

that since positive examples are relatively rare in the database, many

of the randomly chosen examples will be negative. One could imagine

choosing the first group of examples that would maximally cover the

feature space. Since our features are precomputed, this group of songs

would be the same for every query.

This active learning implementation has a number of advantages

over conventional SVM classification. Primarily, by presenting the
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user with and training on the most informative data, the algorithm

can achieve the same classification performance with fewer labeled ex-

amples. Secondly, by allowing the user to dynamically label the set

of instances, a single system may perform any number of classification

and retrieval tasks using the same precomputed set of features and

classifier framework. For example, the system may be used to search

for a specific “mood”, jazz music, or female artists. As a result, the

active SVM system uniformly maps the range of high-level descriptors

people use to describe their perception of music to low-level features

extractable from digital music.

2.2 Audio Features

Since the flexibility of an SVM active learner depends on the descrip-

tive power of the features on which it operates, we experimented with

a number of features for song representation. All of these features

have the property that they reduce every song, regardless of its origi-

nal length, into a fixed-size vector. All of the features were based on

mel-frequency cepstral coefficients (MFCCs), and most of them incor-

porated Gaussian mixture models (GMMs) trained on the MFCCs. It

should be noted that the features compared in this paper only model

stationary spectral characteristics of music, averaged across time, and

ignore the higher-order temporal structure. In order to compare the

features to one another, we used simple SVM cross-validation on the

artist and style classification tasks (see Section 3). The rest of this

section describes these audio features and how they were calculated.

MFCCs are a short-time spectral decomposition of an audio signal

that conveys the general frequency characteristics important to hu-

man hearing. While originally developed to decouple vocal excitation
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from vocal tract shape for automatic speech recognition [21], they have

found applications in other auditory domains including music retrieval

[16, 11].

In order to calculate MFCCs, the signal is first broken into overlap-

ping frames, each approximately 20ms long, a time scale at which the

signal is assumed to be stationary. The log-magnitude of the discrete

Fourier transform of each window is warped to the Mel frequency scale,

imitating human frequency and amplitude sensitivity. The inverse dis-

crete cosine transform decorrelates these “auditory spectra” and the

so called “high time” portion of the signal, corresponding to fine spec-

tral detail, is discarded, leaving only the general spectral shape. The

MFCCs we calculated for the songs in our database contain 13 coeffi-

cients each and, depending on the length of the song, approximately

30,000 temporal frames.

2.2.1 MFCC Statistics

A combination of the mean and unwrapped covariance matrix of all of

the MFCC frames in each song outperformed all other features. These

features are commonly used in speech processing e.g. for segmenting

a recording according to speaker turns [12, 7].

Since MFCC frames describe general spectral aspects of a signal,

their covariance describes the co-occurrence of pairs of features across

time frames, a descriptive quantity. Assuming that all of the MFCC

frames of a song are independent, identically distributed samples from

a single Gaussian, this feature represents a sufficient statistic for es-

timating that Gaussian from all of the samples in the song. While

Gaussianity is a strong assumption to make, the success of these fea-

tures in our experiments shows that they contain much information
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about artists, styles, and moods. Further gains could be seen by mod-

eling songs as mixtures of Gaussians over MFCC frames.

2.2.2 Gaussian Mixture Models

Other features were based on a Gaussian mixture model trained on

MFCC frames collected from all of the songs in the training set. A

single model described the entire music corpus.

Using 0.2% of the MFCC frames selected at random from every

song, we trained a Gaussian mixture model with diagonal covariances.

This GMM is a generative model and assumes that all time frames are

independent identically distributed samples from a single underlying

mixture distribution.

In order to estimate the correct number of Gaussians for our mix-

ture, we measured the log-likelihood of models with different numbers

of Gaussians on our validation dataset. Results of this test can be seen

in Figure 2. The three lines in that figure correspond to three different

ways of collecting training samples. While keeping the total number

of samples the same, the number of songs sampled and the number of

samples per song was varied. From the figure it is clear that the model

that best fits the data is a mixture of somewhere between 50 and 100

Gaussians, independent of the number of songs used in training. This

result probably does not hold beyond the case of pop music MFCCs

modeled with Gaussian Mixtures, but it is interesting to see such a

consistent result even for this case for such a model.

In the two groups of models trained on fewer frames from more

songs, there is a large jump in likelihood between the GMM with 10

Gaussians and that with 20. It turns out that damaged mp3 files in

the training and validation sets caused one Gaussian in all of the larger
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Figure 2: Cross-validation of Gaussian mixture models using different num-
bers of Gaussians and different training sets.

models to latch on to the spurious audio that resulted from decoding

these files. These models make good detectors of the damaged files and

will be used to remove those files from the database for future experi-

ments. The damaged mp3s and their detector do not alter the optimal

number of Gaussians much, if at all, as can be seen by comparing the

peak in those two lines to that in the third, which managed to avoid

the few damaged files altogether.

2.2.3 Average GMM Posteriors

Given the GMM trained on all of the songs, the task of extracting fea-

ture vectors from individual songs still remains. The first such feature

we used was the mean log posterior over each song. We evaluated the

posterior probability of each Gaussian in the GMM given every MFCC

frame in the song, generating one feature dimension per Gaussian in

the model. The features for a particular song were then the mean of
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the log-posterior of all of the frames in that song. If each Gaussian in

the GMM represents one cluster of MFCC frames, then this feature

describes the proportion of each cluster in each song.

Since the number of MFCC frames in a song depends on the song’s

length, and since no Gaussian fits every frame particularly well, the

sum of the log posteriors (corresponding to the joint probability of

IID MFCC frames) would most closely correspond to the length of the

song. The mean log posterior removes this length dependence from

the features to focus on more interesting aspects of the audio. For

these experiments, we extracted features for all songs based on GMMs

with 50 and 100 Gaussians, based on the above GMM cross-validation

experiment.

2.2.4 Fisher Kernel

Jaakkola and Haussler[15] describe the Fisher kernel as a method for

summarizing the influence of the parameters of a generative model on

a collection of samples from that model. In this case, the parameters

we consider are the means of the Gaussians in the GMM, reducing the

dimensionality of the data to the partial derivatives of the log posterior

probabilities of each Gaussian with respect to the data. From [18],

∇µk
log(P (X|µk)) =

m∑
t=1

P (k|xt)Σ−1
k (xt − µk). (2)

where P (k|xt) is the posterior probability of the kth Gaussian in the

mixture given data point xt, and µk and Σk are the mean and variance

of the kth Gaussian. This process then reduces arbitrarily sized songs

to 650 dimensional feature vectors (50 means with 13 dimensions each).

Since the Fisher kernel is a gradient, it measures the partial deriva-
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tive with respect to changes in each dimension of each Gaussian’s mean.

A more compact feature would be the magnitude of the gradient with

respect to each Gaussian’s mean. While the full Fisher kernel cre-

ates a 650 dimensional vector, the Fisher kernel Magnitude is only 50

dimensional.

3 Experiments

In order to thoroughly test the SVM active music retrieval system,

we varied our SVM parameters, features, and the number of training

examples per active retrieval round.

3.1 Dataset

We ran our experiments on a subset of the uspop2002 collection [5, 9].

To avoid the so called “producer effect” [26] in which songs from the

same album share overall spectral characteristics that could swamp

any similarities between albums, we selected artists who had enough

albums in uspop2002 to designate entire albums as training, testing, or

validation. Such a division required each artist to have three albums

for training and two for testing, each with at least eight tracks to get

enough data points per album. The validation set was made up of any

albums the selected artists had in uspop2002 in addition to those five.

In total there were 18 artists (out of 400) who met these criteria, see

Table 4 for a complete list of the artists and albums included in our

experiments. In total, we used 90 albums by 18 artists which contained

a total of 1210 songs divided into 656 training, 451 testing, and 103

validation songs.
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Table 1: The moods and styles with the most songs

Mood Songs Style Songs
Rousing 527 Pop/Rock 730
Energetic 387 Album Rock 466
Playful 381 Hard Rock 323
Fun 378 Adult Contemporary 246
Passionate 364 Rock & Roll 226

3.2 Evaluation

Since the goal of SVM active learning is to quickly learn an arbitrary

classification task, any categorization of the data points can be used

as ground truth for testing. We chose to test our system by classifying

AMG moods, AMG styles, and artist.

The All Music Guide (AMG) is a website (www.allmusic.com) and

book that reviews, rates, and categorizes music and musicians [1]. Two

of our ground truth datasets were AMG “moods” and “styles.” In

their glossary, AMG defines moods as “adjectives that describe the

sound and feel of a song, album, or overall body of work,” for exam-

ple Acerbic, Campy, Cerebral, Hypnotic, Rollicking, Rustic, Silly, and

Sleazy. While AMG never explicitly defines them, styles are sub-genre

categories such as “Punk-Pop,” “Prog-Rock/Art Rock,” and “Speed

Metal.” In our experiments, we used styles and moods that included

50 or more songs, which amounted to 32 styles and 100 moods. See

Table 1 for a list of the most popular moods and styles.

While AMG in general only assigns moods and styles to albums and

artists, for the purposes of our testing, we assumed that all of the songs

on an album had the same moods and styles, namely those attributed

to that album. This assumption does not necessarily hold, for example

with a ballad on an otherwise upbeat album. We are looking into ways
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of inferring these sorts of labels for individual songs from collections of

album labels and a measure of acoustic similarity.

Artist identification is the task of identifying the performer of a

song given only the audio of that song. While a song can have many

styles and moods, it can have only one artist, making this the ground

truth of choice for our N-way classification test of the various feature

sets.

3.3 Experiments

Before beginning our experiments, we needed to set the SVM param-

eters γ (from equation 1), and C, the weighting used to trade-off

between classifier margin and margin violations for particular points

which are more efficiently treated as mislabeled via the so-called “slack

variables”. We used a simple cross-validation grid search to find well-

performing values. We did not exhaustively compare these results for

all combinations of features and ground truth, but only a representa-

tive sample. After normalizing all feature columns to be zero mean

and unit variance, the best performing classifiers used C = 104 and

γ = 0.01. Settings widely divergent from these tended to generate

uninformative classifiers that labeled everything as a negative result.

The first experiment compared our different feature sets against

artist and style ground truth in order to determine if one clearly domi-

nated the others. The first test was 18-way artist identification, train-

ing and testing on separate albums. We provide these results to com-

pare against other author’s systems and to compare features to one

another, but they are not directly applicable to the SVM active learn-

ing task which only learns one category at a time. We also compared

the features to one another by measuring the mean precision on the top
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20 results returned from the test albums after training on the training

albums, the same metric used in the later experiments.

Since the ground truth categories typically have many more nega-

tive than positive examples, it is possible to achieve quite good accu-

racy by classifying all points as negative. In order to focus on positive

examples, we evaluate the SVM active learner by examining the mean

precision of its top 20 results, where results are sorted by distance

from the decision boundary, most positive first, as in [22]. The mean

is taken over all of the categories in a particular ground truth set, e.g.

over all artists.

One justification for this evaluation metric is that as the size of mu-

sic databases grow, the user wants good search results to be returned

first, but may not care so much whether he or she sees all of the positive

examples. We chose the number 20 because the minimum number of

songs in each ground truth category was 50, and the training set con-

tains roughly 40% of the songs, giving a minimum of approximately

20 correct results in each test category. This threshold is of course ad-

justable and smoothly controls the measured numbers, it also happens

that precision-at-20 distinguishes the features well from each other.

The second experiment compares different sized training sets in

each round of active learning on the best-performing features, MFCC

Statistics. Active learning should be able to achieve the same accuracy

as passive learning with fewer labeled examples because it chooses more

informative examples to be labeled first. To measure performance, we

compared mean precision on the top 20 results on unlabeled songs on

the test set containing completely different albums.

In this experiment we compared five different training group sizes.

In each trial, an active learner was randomly seeded with 5 elements
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Figure 3: Active Learning Graphical User Interface.

from within the class, corresponding to a user supplying songs that

they would like the results to be similar to. The learner then performed

simulated relevance feedback with 2, 5, 10, and 20 songs per round,

with a final classifier performing only one round of learning with 50

examples, equivalent to conventional SVM learning. The simulations

stopped once the learner had labeled 50 results so that the different

training sets could be compared.

3.4 User Interface

In addition to testing the system with fixed queries, we also developed

a graphical interface for users to interact with the system in real time

with real queries. A few colleagues were encouraged to evaluate the

system to generate relevant response to their queries. The evaluators

searched for categories such as jazz, rap, rock, punk, female vocalists,
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fast, etc.

The graphical user interface is displayed in Figure 3. The user

selects a representative seed song and begins the active retrieval sys-

tem. The system presents six songs to label as similar or dissimilar to

the representative song according to the user’s desired category (the

song may also be left unlabeled). Next, the user selects the number

of songs to return and begins the classification process. Labeled songs

are displayed at the bottom of the interface, and songs returned by the

classifier are displayed in the list to the right. At any time, the user

may click on any song displayed in the interface to hear a represen-

tative segment of that song. After each classification round, the user

is presented with six new songs to label and may perform the process

iteratively as many times as desired.

3.5 Results

The results of the feature comparison experiment can be seen in Ta-

ble 2. It is clear that the MFCC Statistics outperform the other fea-

tures in all tasks, with Fisher kernel magnitudes second best, while

posterior features and full Fisher kernels perform similarly, favoring

the posterior features for N-way artist identification but Fisher kernels

for the binary style identification task which is more relevant to active

learning.

The results of the active retrieval experiments can be seen in Fig-

ure 4. The figure shows that, as we expected, the quality of the clas-

sifier depends heavily on the number of rounds of relevance feedback,

not only on the absolute number of labeled examples. Specifically, a

larger number of retrainings with fewer new labels elicited per cycle

leads to a better classifier, since there are more opportunities for the
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Table 2: Comparison of various audio features: number of dimensions, ac-
curacy on 18-way artist classification and precision-at-20 for artist identifi-
cation and style identification.

Accuracy Precision-at-20
Feature # dims Artist 18-way Artist ID Style ID
Post050 50 .420 .350 .392
Post100 100 .463 .378 .450
Fisher Kernel 650 .373 .375 .494
Fisher Ker Mag 50 .463 .433 .497
MFCC Stats 91 .687 .656 .744

system to choose the examples that will be most helpful in refining the

classifier. This shows the power of active learning to select informa-

tive examples for labeling. Notice that the classifiers all perform at

about the same precision below 15 labeled examples, with the smaller

examples-per-round systems actually performing worse than the larger

ones. Since the learner is seeded with five positive examples, it may

take the smaller sample size systems a few rounds of feedback before

a reasonable model of the negative examples can be built.

Comparing the ground truth sets to one another, it appears that

the system performs best on the style identification task, achieving a

maximum mean precision-at-20 of 0.683 on the test set, only slightly

worse than the conventional SVM trained on the entire training set

which requires more than 13 times as many labels. See Table 3 for a

full listing of the precision-at-20 of all of the classifiers on all of the

datasets after labeling 50 examples. On all of the ground truth sets,

the active learner can achieve the same mean precision-at-20 with only

20 labeled examples that a conventional SVM achieves with 50.
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Table 3: Precision-at-20 on test set of classifiers trained with different num-
bers of examples per round (Ex/R) or conventional (passive) training, all
trained with 50 examples total.

Ground Truth 2 Ex/R 5 Ex/R 10 Ex/R 20 Ex/R Conv.
Style .683 .671 .663 .641 .587
Artist .624 .629 .603 .583 .501
Mood .478 .465 .447 .435 .412

4 Discussion and Future Work

As expected, labeling more songs per round suffers from diminishing

returns; performance depends most heavily on the number of rounds

of active learning instead of the number of labeled examples. This

result is a product of the suboptimal division of the version space

when labeling multiple data points simultaneously.

Opposing the use of small training sets, however, is the initial lack

of negative examples. Using few training examples per round of feed-

back can actually hurt performance initially because the classifier has

trouble identifying examples that would be most discriminative to la-

bel. It might be advantageous, then, to begin training on a larger

number of examples – perhaps just for the “special” first round – and

then, once enough negative examples have been found, to reduce the

size of the training sets in order to increase the speed of learning.

It would be interesting to see how well GMMs trained on individual

songs would fare as song features. Our MFCC statistics can be equated

to a GMM with only a single Gaussian, and their consistent structure

makes them easy to compare by unwrapping the covariance matrix.

Using mixtures of Gaussians, however, would require comparing more

varied pdfs, for instance with the KL divergence between mixtures,
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precomputing an n× n Gram matrix instead of just n feature vectors.

Moreno et al. have applied this kernel to multimedia classification[19]

but not to musical recommendation.

We are currently working on an online demonstration of the system,

in addition to our current Matlab user interface. Another potential

interface could be seamlessly integrated with current music players,

for instance by interpreting the skipping of a song as a negative label

for the current search, while playing it all the way through would label

it as desireable. In order to train the classifier most effectively, the most

desireable results could be interspersed with the most discriminative

results in a ratio selectable by the user. This system would allow

retraining of the classifier between every labelling, converging on the

most relevant classifier as quickly as possible.

We have shown that SVM active learning can improve the results of

music retrieval searches by more efficiently finding relevant results for

a user’s query as compared to conventional SVM retrieval. Moreover,

MFCC statistics serve as a flexible representation for songs, able to

adequately describe musical artists, moods, and styles.
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Table 4: Artists and albums from uspop2002 included in experiments.

Artist Training Testing Validation

Aerosmith A Little South of Sanity
D1, Nine Lives, Toys in the
Attic

A Little South of Sanity
D2, Live Bootleg

Beatles Abbey Road, Beatles for
Sale, Magical Mystery
Tour

1, A Hard Day’s Night Revolver

Bryan
Adams

Live Live Live, Reckless,
So Far So Good

On a Day Like Today,
Waking Up the Neighbors

Creedence
Clearwater
Revival

Live in Europe, The Con-
cert, Willy and the Poor
Boys

Cosmo’s Factory, Pendu-
lum

Dave
Matthews
Band

Live at Red Rocks D1, Re-
member Two Things, Un-
der the Table and Dream-
ing

Before These Crowded
Streets, Live at Red Rocks
D2

Crash

Depeche
Mode

Music for the Masses,
Some Great Reward, Ultra

Black Celebration, People
are People

Violator

Fleetwood
Mac

London Live ’68, Tango in
the Night, The Dance

Fleetwood Mac, Rumours

Garth
Brooks

Fresh Horses, No Fences,
Ropin’ the Wind

In Pieces, The Chase Garth Brooks

Genesis From Genesis to Revela-
tions, Genesis, Live: The
Way We Walk Vol 1

Invisible Touch, We Can’t
Dance

Green Day Dookie, Nimrod, Warning Insomniac, Kerplunk
Madonna Music, You Can Dance,

I’m Breathless
Bedtime Stories, Erotica Like A Prayer

Metallica Live Shit: Binge and Purge
D1, Reload, S&M D1

Live Shit: Binge and Purge
D3, Load

S&M D2

Pink Floyd Dark Side of the Moon,
Pulse D1, Wish You Were
Here

Delicate Sound of Thunder
D2, The Wall D2

The Wall D1

Queen Live Magic, News of the
World, Sheer Heart Attack

A Kind of Magic, A Night
at the Opera

Live Killers D1

Rolling
Stones

Get Yer Ya-Ya’s Out, Got
Live if You Want It, Some
Girls

Still Life: American Con-
cert 1981, Tattoo You

Roxette Joyride, Look Sharp,
Tourism

Pearls of Passion, Room
Service

Tina
Turner

Live in Europe D1,
Twenty Four Seven,
Wildest Dreams

Private Dancer, Live in Eu-
rope D2

U2 All That You Can’t Leave
Behind, Rattle and Hum,
Under a Blood Red Sky

The Joshua Tree, The Un-
forgettable Fire

Zooropa
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Figure 4: Performance increase due to active learning for (a) artist identifi-
cation, (b) mood classification, and (c) style classification. The plots show
the mean precision in the top 20 results over the test set as the number
of examples per round is varied. The solid line without symbols shows the
performance of conventional SVMs trained on the same number of examples.
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